API src

Found 55 results.

INSPIRE-WMS SL Geologie GK25 - Geologic faults

Dieser Dienst stellt für das INSPIRE-Thema Geologie aus der geologischen Karte im Maßstab 1:25000 umgesetzte Daten, des Landesamt für Umwelt- und Arbeitsschutz bereit.:Dieser Layer visualisiert die räumlichen MappedFeature-Objekte der saarländischen Geologischen Daten (GK25), deren Spezifikationseigenschaft vom Typ ShearDisplacementStructure ist. Die Datengrundlage erfüllt die INSPIRE Datenspezifikation.

INSPIRE-WMS SL Geologie GK100 - Geologic faults

Dieser Dienst stellt für das INSPIRE-Thema Geologie aus der geologischen Karte im Maßstab 1:100000 umgesetzte Daten, des Landesamt für Umwelt- und Arbeitsschutz bereit.:Dieser Layer visualisiert die räumlichen MappedFeature-Objekte der saarländischen Geologischen Daten (GK100), deren Spezifikationseigenschaft vom Typ ShearDisplacementStructure ist. Die Datengrundlage erfüllt die INSPIRE Datenspezifikation.

Ring-shear test data of quartz sand SIBELCO S80 used for analogue modelling in the Tectonic Laboratory (TecLab) at Utrecht University

This dataset provides friction data from ring-shear tests on quartz sand SIBELCO S80 used in analogue modelling of tectonic processes as a rock analogue for the earth’s upper crust (e.g., Klinkmüller et al., 2016). According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of quartz sand S80 are µP = 0.75, µD = 0.59, and µR = 0.69, respectively (Table 5). Cohesion of the material ranges between 0-80 Pa. The material shows no rate-dependency (<1% per ten-fold change in shear velocity v). The tested bulk material consists of quartz sand SIBELCO S80 with grain size of ~0.63-355 µm (D50 = 175 µm. Bulk and grain densities are 1300 kg/m³ and 2650 kg/m³, respectively and the hardness is 7 on Moh’s scale. S80 is sold e.g., by the company SIBELCO (sibelco.com).

Results of analogue tectonic models of rifting and tectonic lineament reactivation along the Main Ethiopian Rift

This data set includes results from a total of 13 analogue tectonic models aimed at simulating the activation of tectonic lineaments associated with the Main Ethiopian Rift in eastern Africa. We use a model set-up based on previous work by Zwaan et al. (2021, 2022). This set-up involves a velocity discontinuity (VD, i.e., the edge of a mobile base plate) to induce extension in the overlying brittle- and viscous model materials representing the upper and lower crust, respectively. Additional structural weaknesses (seeds) at the base of the brittle layer serve to represent activated tectonic weaknesses in nature. Model parameters (different VD and seed orientation, and different seed diameters) are summarized in Table 1. The model results presented in this data publication are obtained through Digital Image Correlation (DIC) and Structure-from-Motion (SfM) analyses. A more detailed description of model set-up, model results, and their interpretation can be found in Zwaan et al. (2025)

Coordinates and stratigraphy of Mesozoic sedimentary rocks in Northern Bavaria, Version II

Ring-shear test data of wallnut shells used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing))

This dataset provides friction data from ring-shear tests walnut shells used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing). According to our analysis the tested materials behave as a Mohr-Coulomb material characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of corundum sand are µP = 0.90, µD = 0.63, and µR = 0.68, respectively (Table 4). Cohesion of the material ranges between 0-40 Pa. The tested bulk material consists of walnut shells with grain size of 180-380 µm (Table 1) and is sold under the name "Walnut Shells" with the product number YR-98547 by the company Yiran Mineral Products (1688.com). The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at HelTec, the Laboratory for experimental tectonics at the Helmholtz Center Potsdam – GFZ German Research Centre for Geosciences in Potsdam, Germany. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016).

Ring-shear test data of mica used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing)

This dataset provides friction data from ring-shear tests black mica used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing). According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of corundum sand are µP = 0.59, µD = 0.56, and µR = 0.57, respectively (Table 4). Cohesion of the material ranges between 100-130 Pa. The tested bulk material consists of black mica (Biotite) with grain size of 380-830 µm and is sold under the name "Black Mica" with the product number YS-004 by the company Yunshi Building Materials Co., Ltd (1688.com). The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at HelTec, the Laboratory for experimental tectonics at the Helmholtz Center Potsdam – GFZ German Research Centre for Geosciences in Potsdam, Germany. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016).

Ring-shear test data of foamglass used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing)

This dataset provides friction data from ring-shear tests foamglass used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing). According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of corundum sand are µP = 0.55, µD = 0.52, and µR = 0.57, respectively (Table 4). Cohesion of the material ranges between 10-30 Pa. The tested bulk material consists of foamglass with grain size of 180-380 µm (Table 1) and is sold under the name "Floating Bead" with the product number PZ-002 by the company Tuyun Mineral Products (1688.com). The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at HelTec, the Laboratory for experimental tectonics at the Helmholtz Center Potsdam – GFZ German Research Centre for Geosciences in Potsdam, Germany. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016).

Ring-shear test data of colored quartz sand used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing)

This dataset provides friction data from ring-shear tests colored quartz sand used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing). According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of corundum sand are µP = 0.75, µD = 0.59, and µR = 0.67, respectively (Table 5). Cohesion of the material ranges between 20-90 Pa. The tested bulk material consists of blue colored quartz sand with grain size of 180-380 µm and is sold under the name "Colored Sand" with the product number A1 by the company Xinran Mineral Products (1688.com). The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at HelTec, the Laboratory for experimental tectonics at the Helmholtz Center Potsdam – GFZ German Research Centre for Geosciences in Potsdam, Germany. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experi-ments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and vol-ume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016).

A database of analogue models documenting fault reactivation during multiphase extension.

In this dataset we provide top-view photos and perspective photos (to create topographic data, i.e. Digital Elevation Models, DEMs) documenting analogue model deformation. For more details on modelling setup, experimental series Wang et al. (2021), to which this dataset is supplementary material. For details on analogue materials refer to Del Ventisette et al., 2019, Maestrelli et al. (2020). The analogue modelling experiments were carried out at the TOOLab (Tectonic Modelling Laboratory) of the Institute of Geosciences and Earth Resources of the National Research Council of Italy, Italy, and the Department of Earth Sciences of the University of Florence. The laboratory work that produced these data was supported by the European Plate Observing System (EPOS) and by the Joint Research Unit (JRU) EPOS Italia. Additional analysis, following the original work, was supported by the “Monitoring Earth’s Evolution and Tectonics” (MEET) project

1 2 3 4 5 6