This data set includes videos depicting the surface evolution (time-lapse photography, topography data and Digital Image Correlation [DIC] analysis) of 11 analogue models, divided in three model series (A, B and C), simulating rifting and subsequent inversion tectonics. In these models we test how orthogonal or oblique extension, followed by either orthogonal or oblique compression, as well as syn-rift sedimentation, influenced the reactivation of rift structures and the development of new inversion structures. We compare these models with an intracontinental inverted basin in NE Brazil (Araripe Basin). All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB).
We used an experimental set-up involving two long mobile sidewalls, two rubber sidewalls (fixed between the mobile walls, closing the short model ends), and a mobile and a fixed base plate. We positioned a 5 cm high block consisting of an intercalation of foam (1 cm thick) and Plexiglas (0.5 cm thick) bars on the top of the base plates. Then we added layers of viscous and brittle analogue materials representing the ductile and brittle lower and upper crust in our experiments, which were 3 cm and 6 cm thick, respectively. A seed made of the same viscous material was positioned at the base of the brittle layer, in order to localize the formation of an initial graben in our models. The standard model deformation rate was 20 mm/h, over a duration of 2 hours for a total of 40 mm of divergence, followed by 2 hours of convergence at the same rate (except for Models B3 and C3, since the oblique rifting did not create space for 40 mm of orthogonal inversion). For syn-rift sedimentation, we applied an intercalation of feldspar and quartz sand in the graben. Model parameters and detailed description of model set-up are summarized in Table 1, and results and their interpretation can be found in Richetti et al. (2023).
Tracking the evolution of the deformational energy budget within accretionary systems provides insight into the driving mechanisms that control fault development. To quantify the impact of these mechanisms on overall system efficiency, we estimate energy budget components as the first thrust fault pair develops in dry-sand accretion analogue experiments.This data set includes photos taken and forces measured in four experiments performed at Université de Cergy-Pontoise in October-November 2016. The experiments are described in McBeck et al. (submitted).The data are organized into 5 main folders, with the following contents:1) E373_photos: Contains 3 subfolders: droit_RDY, gauche_RDY, haut_RDY. Each subfolder contains images taken at 1 second intervals throughout experiment. droit_RDY, gauche_RDY, and haut_RDY contain photos of the right, left, and top of the sandpack.2) E374_photos: Same organization and contents of folder E373_photos3) E375_photos: Same organization and contents of folder E373_photos4) E376_photos: Same organization and contents of folder E373_photos5) forces: Contains text files that list the normal force against the backwall (N) and total applied normal displacement to the backwall (mm) in the second and first columns, respectively. The filename indicates which experiment the text file describes.