API src

Found 69 results.

Similar terms

s/fohn/Föhn/gi

Bebauungspläne Saarwellingen/Saarwellingen (I) - 01 028 05 Industriepark John, 5. Änderung

Bebauungspläne und Umringe der Gemeinde Saarwellingen (Saarland), Ortsteil Saarwellingen:Bebauungsplan "01 028 05 Industriepark John, 5. Änderung" der Gemeinde Saarwellingen, Ortsteil Saarwellingen

Elektrische und magnetische Felder

Elektrische und magnetische Felder Elektrische Energie wird über Leitungen transportiert und durch Geräte genutzt. Elektrische Felder entstehen um Geräte und Leitungen, sobald eine elektrische Spannung anliegt. Magnetfelder entstehen um Geräte und Leitungen, sobald ein elektrischer Strom fließt. Im Alltag erzeugen elektrische Geräte und Leitungen elektrische und magnetische Felder. Mit zunehmendem Abstand werden die Felder schnell schwächer. Durch Ladungen hervorgerufenes elektrisches Feld Wenn Strom fließt, erzeugen elektrische Geräte und Leitungen zwei Arten von Feldern: elektrische und magnetische Felder. Ein elektrisches Feld entsteht, sobald an einem Gerät oder einer Stromleitung eine Spannung anliegt. Die Spannung ist die Voraussetzung dafür, dass elektrischer Strom fließen kann, wenn ein Gerät eingeschaltet wird. Wenn Strom fließt, entsteht zusätzlich ein Magnetfeld . Daher sind elektrische Geräte und Leitungen, in denen Strom fließt, von elektrischen und magnetischen Feldern umgeben. Niederfrequente elektrische und magnetische Felder Für die Stromversorgung wird in der Regel Wechselstrom verwendet. In Deutschland hat er eine Frequenz von 50 Hertz ( Hz ). Dies bedeutet, dass der Strom 100 Mal pro Sekunde seine Richtung ändert. Auch die elektrischen und magnetischen Felder ändern ihre Richtung genauso oft wie der Strom. Die Frequenz von 50 Hertz liegt im unteren Bereich des elektromagnetischen Spektrums. Deshalb heißen diese Felder "niederfrequent". Durch Strom hervorgerufenes magnetisches Feld Feldstärken und Maßeinheiten Die Stärke des elektrischen Feldes steigt mit der Spannung, die an der Leitung anliegt. Maßeinheit für die Spannung ist das Volt ( V ). Die elektrische Feldstärke wird in Volt pro Meter ( V/m ) angegeben. Die Stärke des Magnetfeldes um eine elektrische Leitung hängt davon ab, wie stark der Strom ist, der fließt. Die Stromstärke wird in Ampere (A) und die Magnetfeldstärke in Ampere pro Meter ( A/m ) gemessen. Für den Strahlenschutz ist die magnetische Flussdichte relevant. Das Erzeugen elektrischer Ströme in leitfähigen Körpern hängt direkt mit dieser Größe zusammen. Sie ist rechnerisch mit der Magnetfeldstärke verknüpft. Die Maßeinheit ist Tesla ( T ) beziehungsweise Mikrotesla ( µT ). Ein Mikrotesla ist ein Millionstel Tesla (0,000001 T ). Begriffe und Maßeinheiten Elektrische Feldstärke Magnetisches Feld Feldstärke Flussdichte Maßeinheit Volt pro Meter ( V/m ) Kilovolt pro Meter (kV/m), 1 kV/m = 1.000 V/m Ampere pro Meter ( A/m ) 1 Tesla = 1 Voltsekunde pro Quadratmeter (1 T = 1 Vs/m 2 ) Mikrotesla ( µT ), 1 µT = 0,000001 T Elektrische und magnetische Felder im Alltag In der Nähe von elektrischen Haushaltsgeräten und Leitungen sind die elektrischen Feldstärken und magnetischen Flussdichten meist gering. Bei manchen Geräten sind höhere magnetische Flussdichten möglich, allerdings meist nur sehr nahe an den Geräteoberflächen (zum Beispiel Geräte mit einer sehr hohen Stromaufnahme wie Staubsauger oder Föne). Je weiter man sich entfernt, desto schwächer werden die elektrischen und magnetischen Felder . Die Exposition der Bevölkerung mit niederfrequenten Feldern ist daher normalerweise niedrig. Dies gilt auch für Personen, die in der Nähe einer Hochspannungsleitung wohnen. Abstand und Abschirmung Grundsätzlich verringern sich die Feldstärken mit der Entfernung von den Feldquellen. Elektrische Felder werden darüber hinaus zum Beispiel durch übliche Baustoffe für Gebäude bereits gut abgeschirmt. Im Gegensatz dazu lassen sich Magnetfelder nur mit relativ großem Aufwand abschirmen. Dieser Artikel wurde sprachlich mit KI überarbeitet. Stand: 28.02.2025

Model Output Statistics for Hohn (10038)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Seichter Föhn

In den 30er Jahren entdeckt, danach nahezu ein halbes Jahrhundert wieder vergessen, jetzt immer noch nicht viel mehr bekannt als Beschreibungen - das ist der seichte Föhn. Im Gegensatz zum bekannten (hochreichenden) Föhn ist diese Föhnströmung auf den Bereich unterhalb des Alpenhauptkamms beschränkt. Luft fließt aus dem Süden über die niedrigen Alpenpasse in die Föhntaler (z.B. Wipptal). In einer Klimatologie über 10 Jahre sollen für das Wipptal die Häufigkeit des seichten Föhns, die Verhältnisse am Boden und im unteren Teil der Atmosphäre untersucht und mit hochreichendem Föhn verglichen werden. Mit Hilfe theoretischer Untersuchungen und idealisierter Computersimulationen werden die Bedingungen, die zu seichtem Föhn führen, und die für seichten Föhn entscheidenden physikalischen Mechanismen erforscht. Die Ergebnisse werden weiters mit Hilfe von Messdaten von kürzlich im Wipptal aufgestellten Instrumenten und weiterem im Rahmen des internationalen mesoskaligen alpinen Programms (MAP) aufgezeichneten Datenmaterials überprüft. Dieses Projekt ist ein Kernbestandteil von MAP, das sich ein besseres Verständnis von Strömungen durch Passe und von seichtem Föhn als eines der wissenschaftlichen v Ziele gesetzt hat. Im Herbst 1999 werden im Rahmen von MAP im Wipptal Föhnmessungen mit einer Vielzahl von Messinstrumenten und Flugzeugen durchgeführt.

GTS Bulletin: ISND10 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISND10 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISN): Synoptic observations from fixed land stations at non-standard time (i.e. 0100, 0200, 0400, 0500, ... UTC) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10067;Marienleuchte;10126;Wittmundhafen;10136;Nordholz (Flugplatz);10172;Laage (Flugplatz);10238;Bergen;10246;Faßberg;10304;Meppen;10334;Wunstorf;10335;Bückeburg;10343;Celle;10439;Fritzlar (Flugplatz);10476;Holzdorf (Flugplatz);10500;Geilenkirchen (Flugplatz);10502;Nörvenich (Flugplatz);10516;Koblenz (Falkensteinkaserne);10613;Büchel (Flugplatz);10618;Idar-Oberstein;10743;Niederstetten;10771;Kümmersbruck;10837;Laupheim;10853;Neuburg/Donau (Flugplatz);10856;Lechfeld;10857;Landsberg (Flugplatz);10860;Ingolstadt (Flugplatz);10954;Altenstadt;) (Remarks from Volume-C: SYNOP)

Innsbrucker Föhnstudien V: GAP Flow

Die 'Innsbrucker Föhnstudien 1-4' am Anfang des 20. Jahrhunderts leisteten Pionierarbeit zum Verständnis von Föhn, eines starken, böigen und oft warmen und trockenen Windes im Lee von Gebirgen. Am Ende des 20. Jahrhunderts wurde im Rahmen des internationalen 'Mesokaligen Alpinen Programms' (MAP) Föhn in bisher unerreichtem Detail und Vollständigkeit vermessen. Daten aus MAP und aus einem kleineren Programm zur Untersuchung des Föhns (örtlicher Name: Bora) entlang der adriatischen Küste halfen unserem Projekt, den 'Innsbrucker Föhnstudien 5', herauszufinden, wie und warum Luft im Lee des Gebirges hinunter'fällt' und dabei immer schneller wird, wie häufig Föhn auftritt und wie gut er vorausgesagt werden kann. Unsere Forschungsarbeiten ergaben ein nahezu vollständiges Bild des Föhns, das wir aus Puzzleteilen früherer Föhnforschungen und von MAP zusammentrugen. Föhn läßt sich am besten mit Wasser vergleichen, das in einem Fluss oder einem See langsam auf ein Wehr zuströmt, dort immer schneller und gleichzeitig auch viel dünner (meist weniger als 1m) wird und hinunterstürzt. Luft verhält sich ähnlich, nur ist die Luftschicht, die als Fallwind hinter dem Gebirgskamm hinunterstürzt, typischerweise hunderte Meter dick. Während die Bauingeneure den Oberrand des Wehrs glatt bauen, sind Gebirge zerklüftet und voller Einschnitte. Luft wird natürlich zuerst durch solche Einschnitte und Pässe strömen, bevor sie über den Kamm fließt. Wir konnten zeigen, dass die berühmten Föhnorte unserer Erde alle im Lee von Gebirgeseinschnitten liegen. Auch für einen erfahrenen Meteorologen ist es nicht immer leicht, Föhn von einem nächtlichen Hangwind zu unterscheiden, der dadurch entsteht, dass die Luft durch Ausstrahlung schwerer wird. Ob Föhn blies, hatte man bisher immer subjektiv anhand des zeitlichen Verlaufs von Windgeschwindigkeit und -richtung, Temperatur und relativer Feuchte bestimmt. Das hatte 2 Nachteile: das Resultat hing davon ab, wer die Bestimmung vornahm, und außerdem war es zu zeitaufwendig, Jahrzehnte von Daten oder Daten von mehreren Föhnorten händisch zu klassifizieren. Wir entwickelten erstmals einen objektiven, zuverlässigen Computeralgorithmus zur Föhnbestimmung. Damit waren wir in der Lage, Föhnklimatologien auf beiden Seiten des Alpenhauptkamms zu erstellen. Im windigsten Ort (Ellbögen ca. 10 km südlich von Innsbruck) bläst der Föhn im Jahresschnitt während 20Prozent der Zeit. Auch die größten Computer sind nicht mächtig genug, alle Täler und Einschnitte der Gebirgszüge wiederzugeben und dort die Wetterdetails vorherzusagen. Föhn im Wipptal ist z.B. gar nicht direkt enthalten. Trotzdem finden sich Spuren, mittels derer wir wiederum objektiv die Wahrscheinlichkeit für Föhn voraussagen können. Auch 3 Tage in die Zukunft ist diese Föhnvorhersage praktisch gleich gut wie für den ersten Tag. Erst ab dem vierten Tag nimmt die Vorhersagegüte dann deutlich ab.

GTS Bulletin: ISCD04 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISCD04 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISC): Climatic observations from land stations A2 (D): 90°E - 0° northern hemisphere (The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10042;Schönhagen (Ostseebad);10067;Marienleuchte;10093;Putbus;10097;Greifswalder Oie;10126;Wittmundhafen;10129;Bremerhaven;10130;Elpersbüttel;10136;Nordholz (Flugplatz);10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;)

GTS Bulletin: ISMD10 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISMD10 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISM): Main synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10067;Marienleuchte;10126;Wittmundhafen;10136;Nordholz (Flugplatz);10172;Laage (Flugplatz);10238;Bergen;10246;Faßberg;10304;Meppen;10334;Wunstorf;10335;Bückeburg;10439;Fritzlar (Flugplatz);10476;Holzdorf (Flugplatz);10500;Geilenkirchen (Flugplatz);10502;Nörvenich (Flugplatz);10516;Koblenz (Falkensteinkaserne);10613;Büchel (Flugplatz);10618;Idar-Oberstein;10743;Niederstetten;10771;Kümmersbruck;10837;Laupheim;10853;Neuburg/Donau (Flugplatz);10856;Lechfeld;10857;Landsberg (Flugplatz);10860;Ingolstadt (Flugplatz);10954;Altenstadt;) (Remarks from Volume-C: SYNOP)

GTS Bulletin: ISID10 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISID10 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISI): Intermediate synoptic observations from fixed land stations A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10067;Marienleuchte;10126;Wittmundhafen;10136;Nordholz (Flugplatz);10172;Laage (Flugplatz);10238;Bergen;10246;Faßberg;10304;Meppen;10334;Wunstorf;10335;Bückeburg;10439;Fritzlar (Flugplatz);10476;Holzdorf (Flugplatz);10500;Geilenkirchen (Flugplatz);10502;Nörvenich (Flugplatz);10516;Koblenz (Falkensteinkaserne);10613;Büchel (Flugplatz);10618;Idar-Oberstein;10743;Niederstetten;10771;Kümmersbruck;10837;Laupheim;10853;Neuburg/Donau (Flugplatz);10856;Lechfeld;10857;Landsberg (Flugplatz);10860;Ingolstadt (Flugplatz);10954;Altenstadt;) (Remarks from Volume-C: SYNOP)

GTS Bulletin: ISXD84 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISXD84 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISX): Other surface data A2 (D): 90°E - 0° northern hemisphere (The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10042;Schönhagen (Ostseebad);10067;Marienleuchte;10093;Putbus;10097;Greifswalder Oie;10126;Wittmundhafen;10129;Bremerhaven;10130;Elpersbüttel;10136;Nordholz (Flugplatz);10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;) (Remarks from Volume-C: SYNOP HALF HOURLY H+30 ( NATIONAL PART ))

1 2 3 4 5 6 7