We provide a single file (exodus II format) that contains all results of the modeling efforts of the associated paper. This encompasses all structural information as well as the pore pressure, temperature, and fluid velocity distribution through time. We also supply all files necessary to rerun the simulation, resulting in the aforementioned output file.
The model area covers a rectangular area around the Central European Basin System (Maystrenko et al., 2020). The data publication is compeiment to Frick et al., (2021). The file published here is based on the structural model after Maystrenko et al., (2020) which resolves 16 geological units. More details about the structure and how it was derived can be found in Maystrenko et al., (2020). The file presented contains information on the regional variation of the pore pressure, temperature and fluid velocity of the model area in 3D. This information is presented for 364 time steps starting from 43,000 years before present and ending at 310000 years after present.
This model was created as part of the ESM project (Advanced Earth System Modelling Capacity; https://www.esm-project.net). This project looks at the development of a flexible framework for the effective coupling of Earth system model components. In this, we focused on the coupling between atmosphere and the subsurface by simulating the response of glacial loading, in terms of thermal and hydraulic forcing, on the hydrodynamics and thermics of the geological subsurface of Central Europe. For this endeavor, we populated the 3D structural model by Maystrenko and Coauthors (2020) with rock physical properties, applied a set of boundary conditions and simulated the transient 3D thermohydraulics of the subsurface. More details about this can be found in the accompanying paper (Frick et al., 2021)
This dataset provides the grid files which were used to generate the 3d structural model for Berlin, capital city of Germany. It covers a rectangular area around the political boundaries of Berlin. Geologically the region is located in the Northeast German Basin which is in turn part of the Central European Basin System. The data publication is a compliment to the publications Frick et al., (2019) and Haacke et al., (2019) and resolves 23 geological units. These can be separated into eight Cenozoic, eight Mesozoic and three Paleozoic units, the upper and lower crust as well as the lithospheric mantle.
We present files which show the regional variation in depth and thickness of all units in the form of regularly spaced grids where the grid spacing is 100 m. This model was created as part of the ongoing project Geothermal potential Berlin which was also partly situated in Energy Systems 2050, both of whom look at the evaluation of the local thermal field and the closely related geothermal potential. These are obtained by simulating fluid- and heatflow in 3d with numerical models built based on the data presented here. These numerical models and simulations rely heavily on a precise representation of the subsurface distribution of rock properties which are in turn linked to the different geological units. Hence, we integrated all available geological and geophysical data (see related work) into a consistent 3D structural model and will describe shortly how this was carried out (Methods).
For further information the reader is referred to Frick et al., (2016) and Frick et al., (2019).
We provide a set of grid files that collectively allow recreating a 3D geological model which covers the Upper Rhine Graben and its adjacent tectonic domains, such as portions of the Swiss Alps, the Molasse Basin, the Black Forest and Vosges Mountains, the Rhenish Massif and the Lower Rhine Graben. The data publication is a complement to the publication of Freymark et al. (2017).
Accordingly, the provided structural model consists of (i) 14 sedimentary and volcanic units; (ii) a crystalline crust composed of seven upper crustal units and a lower crustal unit; and (iii) two lithospheric mantle units. The files provided here include information on the regional variation of these geological units in terms of their depth and thickness, both attributes being allocated to regularly spaced grid nodes with horizontal spacing of 1 km.
The model has originally been developed to obtain a basis for numerical simulations of heat transport, to calculate the lithospheric-scale conductive thermal field and assess the related geothermal potentials, in particular for the Upper Rhine Graben (a region especially well-suited for geothermal energy exploitation). Since such simulations require the subsurface variation of physical rock properties to be defined, the 3D model differentiates units of contrasting materials, i.e. rock types. On that account, a large number of geological and geophysical data have been analysed (see Related Work) and we shortly describe here how they have been integrated into a consistent 3D model (Methods). For further information on the data usage and the characteristics of the units (e.g., lithology, density, thermal properties), the reader is referred to the original article (Freymark et al., 2017). The contents and structure of the grid files provided herewith are described in the Technical Info section.