Das Projekt "Steady-State Dilution and Mixing-Controlled Reactions in Three-Dimensional Heterogeneous Porous" wird vom Umweltbundesamt gefördert und von Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology durchgeführt. Understanding transport of contaminants is fundamental for the management of groundwater re-sources and the implementation of remedial strategies. In particular, mixing processes in saturated porous media play a pivotal role in determining the fate and transport of chemicals released in the subsurface. In fact, many abiotic and biological reactions in contaminated aquifers are limited by the availability of reaction partners. Under steady-state flow and transport conditions, dissolved reactants come into contact only through transverse mixing. In homogeneous porous media, transverse mixing is determined by diffusion and pore-scale dispersion, while in heterogeneous formations these local mixing processes are enhanced. Recent studies investigated the enhancement of transverse mixing due to the presence of heterogeneities in two-dimensional systems. Here, mixing enhancement can solely be attributed to flow focusing within high-permeability inclusions. In the proposed work, we will investigate mixing processes in three dimensions using high-resolution laboratory bench-scale experiments and advanced modeling techniques. The objective of the proposed research is to quantitatively assess how 3-D heterogeneity and anisotropy of hydraulic conductivity affect mixing processes via (i) flow focusing and de-focusing, (ii) increase of the plume surface, (iii) twisting and intertwining of streamlines and (iv) compound-specific diffusive/dispersive properties of the solute species undergoing transport. The results of the experimental and modeling investigation will allow us to identify effective large-scale parameters useful for a correct description of conservative and reactive mixing at field scales allowing to explain discrepancies between field observations, bench-scale experiments and current stochastic theory.
Das Projekt "Sustainable use of fruits of Bertholletia excelsa" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Arbeitsbereich für Weltforstwirtschaft und Institut für Weltforstwirtschaft des Friedrich-Löffler-Institut, Bundesforschungsinstitut für Tiergesundheit durchgeführt. Objectives: Bertholletia excelsa Humb. and Bonpl. is one of the protected tree species of Amazonia in Brazil although classified as vulnerable acc. to IUCN. It is prohibited to fell trees and use their timber. However, the fruits, commonly known as Brazil nuts, can be harvested for local consumption and export. The objective of the project is to investigate a natural primary forest in Roraima, Brazil and assess the commercial potential for harvesting nuts, with special reference to international sustainability criteria. Although there has been no timber harvest in the forest in the past, nuts have been collected extensively by the local population - mainly for sale on the local markets. These activities were stopped in 2004. The research is closely connected to the natural forest management project. Results: Results are not yet available. However, preliminary data analyses reveal that - there is hardly any correlation between size of mother trees and available regeneration or available fruit mass located on the ground around those trees; - the amount of nuts per tree (approx. greater than 60 cm dbh) is very variable; - regeneration (seedlings and advanced growth) is sparse which makes long-term survival of the species questionable if collection of nuts in continued like in the past.
Das Projekt "Forest management in the Earth system" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Das Projekt "Energy Storage for Direct Steam Solar Power Plants (DISTOR)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Objective: Solar thermal power plants represent today's most economic systems to generate electricity from solar insulation in them-range in regions like the Mediterranean area. By demonstrating the feasibility of direct steam generation in the absorber pipes European industry and research institutions have gained a leading position in this technology area. A key element foray successful market penetration is the availability of storage systems to reduce the dependence on the course of solarinsolation. The most important benefits result from -reduced internal costs due to increased efficiency and extended utilisation of the power block-facilitating the integration of a solar power plant into an electrical grid-adoption of electricity production to the demand thus increasing revenues Efficient storage systems for steam power plants demand transfer of energy during the charging/discharging process at constant temperatures. The DISTOR project focuses on the development of systems using phase change materials (PCM) as storage media. In order to accelerate the development, the DISTOR project is based on parallel research on three different storage concepts. These concepts include innovative aspects like encapsulated PCM, evaporation heat transfer and new design concepts. This parallel approach takes advantage of synergy effects and will enable the identification of the most promising storage concept. A consortium covering the various aspects of design and manufacturing has been formed from manufacturers, engineering companies and research institutions experienced in solar thermal power plants and PCM technology. The project will provide advanced storage material based on PCM for the temperature range of 200-300 C adapted to the needs of Direct Steam generation thus expanding Europe's strong position in solar thermal power plants.
Das Projekt "Remote sensing of aerosols, clouds and trace gases using synergy of AATSR, MERIS, and SCIAMACHY onboard ENVISAT" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik durchgeführt. Accurate satellite retrieval algorithms are needed to study long-term trends in trace gas abundances related to climate change. The main aim of this project is to develop improved aerosol and cloud retrieval algorithms in order to get more accurate SCIAMACHY trace gas retrievals. The results will contribute to a better understanding of aerosol and cloud properties and their changes on a global scale. This will be achieved by utilising the synergetic data from the optical instruments onboard ENVIronmental SATellite (ENVISAT), launched by the European Space Agency (ESA) on March 1st, 2002. The data of Advanced Along-Track Scanning Radiometer (AATSR), Medium Resolution Imaging Spectrometer (MERIS), and SCIAMACHY, all of which measure the same ground scene, will be used. The three instruments continue to have excellent performance and have already generated more than five years of data. Compared to just one single instrument, combined data from these optical instruments having different spatial resolutions, observation modes, spectral resolutions and spectral bands characterize aerosol, cloud, and trace gas properties to a much better degree. In this project, a new validation and testing strategy based on extended realistic simulated satellite scenes will be followed.
Das Projekt "Fuel cell power trains and clustering in heavy-duty transports (FELICITAS)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI durchgeführt. Objective: The FELICITAS consortium proposes an Integrated Project to develop fuel cell (FC) drive trains fuelled with both hydrocarbons and hydrogen. The proposed development work focuses on producing FC systems capable of meeting the exacting demands of heavy-dut y transport for road, rail and marine applications. These systems will be: - Highly efficient, above 60Prozent - Power dense, - Powerful units of 200kW plus, - Durable, robust and reliable. Two of the FC technologies most suitable for heavy-duty transport applic ations are Polymer Electrolyte FuelCells (PEFC) and Solid Oxide Fuel Cells (SOFC). Currently neither technology is capable of meeting the wideranging needs of heavy-duty transport either because of low efficiencies, PEFC, or poor transient performance,SO FC. FELICITAS proposes the development of high power Fuel Cell Clusters (FCC) that group FC systems with other technologies, including batteries, thermal energy and energy recuperation.The FELICITAS consortium will first undertake the definition of the requirements on FC power trains for the different heavy-duty transport modes. This will lead to the development of FC power train concepts, which through the use of advanced multiple simulations, will undertake evaluations of technical parameters, reliab ility and life cycle costs. Alongside the development of appropriate FC power trains the consortium will undertake fundamental research to adapt and improve existing FC and other technologies, including gas turbines, diesel reforming and sensor systems f or their successful deployment in the demanding heavy-duty transport modes. This research work will combine with the FC power trains design and simulation work to provide improved components and systems, together with prototypes and field testing where ap propriate.The FELICITAS consortium approach will substantially improve European FC and associated technology knowledae and know-how in the field of heavv-duty transport.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von MAN Truck & Bus SE durchgeführt. Das Projekt STEAM hat das Ziel, zukünftige Nutzungskonzepte von Fahrzeugen zum Personen- sowie Gütertransport ganzheitlich und nutzerzentriert zu analysieren und zu entwerfen. Diese Fahrzeugnutzungskonzepte heben dabei das Potential der Nutzung in nachfrageschwacher Zeiten, das sich aus der Schnittmenge von Individual-, Öffentlich- und Güterverkehr und deren optimaler Nutzung ergibt. Dazu wird der bestehende Linienverkehr durch Kleinbusse unter Berücksichtigung individueller, im Projekt zu identifizierender Nutzer- und Nutzungsanforderungen ergänzt und somit ganzheitlich flexibilisiert und effizienter gestaltet. Die so entstehenden semi-flexiblen Buslinien bedienen die Mobilitätsnachfrage in den Haupt- und Nebenverkehrszeiten des klassischen urbanen Linienverkehrs bedarfsgesteuert und effizient. Zur Erreichung der Projektziele umfasst das Projekt: (i) die Konzeption und simulative Erprobung elektrifizierter, semi-flexibler Buslinien, (ii) die perspektivische Integration von städtischem Lieferverkehr in semi-flexible Linien, (iii) die Entwicklung und prototypische Umsetzung eines dafür geeigneten, modularen Fahrzeugnutzungskonzepts und (iv) die Validierung der Simulationen und die Erprobung der Fahrzeugnutzungskonzepte im Rahmen eines Reallabors. Aus der Verknüpfung der Simulationen und des Reallabors werden abschließend konkrete Handlungsempfehlungen abgeleitet mit dem Ziel, eine langfristig nachhaltige Entwicklungsmöglichkeit für die urbane Mobilität in München und weiteren Metropolregionen zu gestalten. Die Verbundpartner sowie weitere Stakeholder werden iterativ während der Projektlaufzeit und anhand der validierten und erprobten Erkenntnisse, Anforderungen an zukünftige Fahrzeuge sowie deren Innenräume ableiten. Darüber hinaus ermöglicht der holistische, nutzerzentrierte Ansatz innovative Betriebskonzepte und damit Geschäftsmodelle zu entwerfen und zu analysieren.
Das Projekt "Optimised Radar to Find Every buried Utility in the street (ORFEUS)" wird vom Umweltbundesamt gefördert und von Tracto-Technik GmbH & Co. KG durchgeführt. This project addresses the requirement for advanced technologies for locating, maintaining and rehabilitating buried infrastructures (area II.3.3). Specifically it fulfils the requirement for locating buried assets. Ground Penetrating Radar (GPR) is the only known non-invasive technique that can detect metallic and non-metallic buried objects, but conventional pulse time-domain technology has reached the limit of its development potential. This project will use innovative techniques to provide a clear advance in the state of the art. The project has three major objectives: - To provide a step change in the depth penetration and spatial resolution of GPR used for surveys carried out from the ground surface. This will be achieved by increasing the frequency and dynamic range of the radar by researching and developing Stepped Frequency Continuous Wave techniques and ultra wide-band antennas whose performance is independent of ground characteristics. - To prototype an innovative GPR-based real-time obstacle detection system for steerable bore- heads of Horizontal Directional Drilling (HDD) pipe and cable laying systems so that they can operate more safely below ground. This will require new antenna designs to be developed to provide a look-ahead capability and robust systems to be designed to protect against the hostile mechanical environment. - To increase knowledge of the electrical behaviour of the ground, by means of in-situ measurements to enhance understanding of the sub-soil electrical environment, and to provide information for scientifically based antenna design. The project will lead to practical solutions that can be implemented cost-effectively to provide a capability to locate buried infrastructure with accuracy and reliability. This will reduce the need for excavations in the highway, thus minimising direct and indirect costs, reducing the incidence of pollution and enhancing safety. Prime Contractor: Osys Technology Ltd., Newcastle Upon Tyne, United Kingdom.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Technische Universität München, Lehrstuhl für Produktentwicklung und Leichtbau durchgeführt. Das Projekt STEAM hat das Ziel, zukünftige Nutzungskonzepte von Fahrzeugen zum Personen- sowie Gütertransport ganzheitlich und nutzerzentriert zu analysieren und zu entwerfen. Diese Fahrzeugnutzungskonzepte heben dabei das Potential der Nutzung in nachfrageschwacher Zeiten, das sich aus der Schnittmenge von Individual-, Öffentlich- und Güterverkehr und deren optimaler Nutzung ergibt. Dazu wird der bestehende Linienverkehr durch Kleinbusse unter Berücksichtigung individueller, im Projekt zu identifizierender Nutzer- und Nutzungsanforderungen ergänzt und somit ganzheitlich flexibilisiert und effizienter gestaltet. Die so entstehenden semi-flexiblen Buslinien bedienen die Mobilitätsnachfrage in den Haupt- und Nebenverkehrszeiten des klassischen urbanen Linienverkehrs bedarfsgesteuert und effizient. Zur Erreichung der Projektziele umfasst das Projekt: (i) die Konzeption und simulative Erprobung elektrifizierter, semi-flexibler Buslinien, (ii) die perspektivische Integration von städtischem Lieferverkehr in semi-flexible Linien, (iii) die Entwicklung und prototypische Umsetzung eines dafür geeigneten, modularen Fahrzeugnutzungskonzepts und (iv) die Validierung der Simulationen und die Erprobung der Fahrzeugnutzungskonzepte im Rahmen eines Reallabors. Aus der Verknüpfung der Simulationen und des Reallabors werden abschließend konkrete Handlungsempfehlungen abgeleitet mit dem Ziel, eine langfristig nachhaltige Entwicklungsmöglichkeit für die urbane Mobilität in München und weiteren Metropolregionen zu gestalten. Die Verbundpartner sowie weitere Stakeholder werden iterativ während der Projektlaufzeit und anhand der validierten und erprobten Erkenntnisse, Anforderungen an zukünftige Fahrzeuge sowie deren Innenräume ableiten. Darüber hinaus ermöglicht der holistische, nutzerzentrierte Ansatz innovative Betriebskonzepte und damit Geschäftsmodelle zu entwerfen und zu analysieren.
Das Projekt "Processes of Vertical Exchange in Shelf Seas (PROVESS)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. PROVESS is a joint European funded project for an interdisciplinary study of the vertical fluxes of properties through the water column and the surface and bottom boundaries based on the integrated application of new measuring techniques, new advances in turbulence theory and new models. IfM Hamburg is responsible for six tasks concerning numerical simulations of mean flow properties, turbulence and suspended matter transport. IfM's tasks in PROVESS are in detail: Physical modelling: Model development and code verification, cooperation with MUMM Management Unit of Mathemetical Models of North Sea and Scheldt Estuary), Brussels, Belgium. For this task, the existing public domain water column model GOTM (General Ocean Turbulence Model) will be extended. Model validation against existing data sets, cooperation with MUMM, Brussels, Belgium. Here some historical data sets will be simulated. These are the FLEX 1976 and the UWB Irish Sea FLY data set, both are scenarios already included into GOTM. Furthermore, the POL 1991 and North Sea data from NERC have to be simulated. Synthesis of PROVESS data with models, cooperation with close to all PROVESS partners. The northern and the southern North Sea experiments carried out during PROVESS will be simulated in detail by the numerical water column model. Modelling sediment damping of turbulence: Model development and code verification, cooperation with LHF (Laboratoire d'Hydraulique de France SA), Grenoble, France. Model validation against existing data sets, cooperation with LHF (Laboratoire d'Hydraulique de France SA), Grenoble, France. Synthesis of PROVESS data with models, cooperation with close to all PROVESS partners.
Origin | Count |
---|---|
Bund | 232 |
Type | Count |
---|---|
Förderprogramm | 232 |
License | Count |
---|---|
offen | 232 |
Language | Count |
---|---|
Deutsch | 232 |
Englisch | 183 |
Resource type | Count |
---|---|
Keine | 176 |
Webseite | 56 |
Topic | Count |
---|---|
Boden | 189 |
Lebewesen & Lebensräume | 213 |
Luft | 172 |
Mensch & Umwelt | 232 |
Wasser | 159 |
Weitere | 232 |