Das Projekt "SP 1.2 Optimisation of soil organic matter management under intensive cropping in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Intensive maize-wheat double cropping is a common plant production system at the North China Plains. More than 600 kg N/ha as mineral N fertiliser are applied annually while only 300 to 350 kg N/ha are removed with plant products. Despite of this extraordinarily high level of N-fertilisation, the yield potential in the common wheat-maize cropping system is by far not fully taped yet. Beside low N utilization efficiencies (partly less than 30 percent), frequent lodging and environmental pollution including leaching and gaseous losses of N are the results of the excessive use of fertiliser-N. Within this study, different N-fertilisation, tillage and cropping strategies shall be investigated with their potential to maintain high levels of SOM and to guaranty high and stable yields in the long term in the North China Plain. Future developments like climate change and increasing demand for energy production from plant residues shall be considered. Special emphasis will be put on the fate of (fertilised) N which preferably should be available for plant uptake and built up of organic matter but may also disappear by leaching and gaseous losses. A combination of lab experiments, existing and newly established long term field experiments combined with computer modelling shall be used to extrapolate short and medium term findings into the future and up to a regional scale.
Das Projekt "The impact of tropical - extratropical interactions on downstream predictability (TROP)" wird vom Umweltbundesamt gefördert und von Deutscher Wetterdienst durchgeführt. In this project we investigate the mechanisms by which organised tropical convective systems, and, in particular, tropical cyclones undergoing extratropical transition (ET), interact with the midlatitude upper-level wave guide. We consider how this interaction influences the dynamics and predictability of the ET system itself, the midlatitude flow, and sub tropical cyclones that may develop downstream. We will use a combined observational, COSMO modelling, and data denial approach applied to the ET cases of the THORPEX Pacific Asian Regional Campaign. Diagnostic techniques, including PV inversion and object-oriented diagnostics will be applied to investigate the interactions between the convective and synoptic-scale flow. We will investigate the impact of different regimes of tropical convection on midlatitude predictability through analysis of Year of Tropical Convection datasets and TIGGE data, conducting experiments with ensemble prediction systems (EPS), and diagnosing the results with ensemble sensitivity analysis and other techniques. Finally, we will investigate the predictability of the structural changes during ET and of sub-tropical cyclogenesis using the multiscale ensemble. The results of this study will be used to define observational strategies for a future THORPEX field campaign.
Das Projekt "Charakterisierung der mit Natriumpyrophosphat löslichen organischen Bodensusbstanz mittels FT-IR" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Bodenlandschaftsforschung durchgeführt. Zusammensetzung und Menge der organischen Bodensubstanz (OBS) werden durch die Landnutzungsform beeinflußt. Die OBS läßt sich nach ihrer Abbaubarkeit und nach ihrer Löslichkeit in verschiedene Pools einteilen. So kann die wasserlösliche organische Bodensubstanz (DOM) als Maßzahl für die abbaubare OBS herangezogen werden. Mit Natriumpyrophosphat-Lösung als Extraktionsmittel läßt sich ein weit größerer Anteil der OBS erfassen, da der stabilisierende Bindungsfaktor zwischen OBS und Bodenmineralen entfernt wird. Extrahiert man zuerst mit Wasser und anschließend mit Natriumpyrophosphat-Lösung, erhält man im letzten Schritt den schwer abbaubaren OBS-Anteil. Über die funktionelle Zusammensetzung der organischen Substanz dieser Pools und deren Abhängigkeit von Landnutzungsformen ist relativ wenig bekannt. Ziel der geplanten Untersuchung ist es, den Pool der löslichen abbaubaren und schwer abbaubaren OBS zu quantifizieren und deren funktionelle Zusammensetzung mittels FT-IR Spektroskopie zu erfassen. Die so gewonnenen Daten sollen der Validierung von Soil Organic Matter Turnover modellen (z.B. Roth 23.6) dienen und die im Modell berechneten Pools um einen qualitativen Term ergänzen. In Zusammenarbeit mit anderen Arbeitsgruppen sollen im DFG-Schwerpunktprogramm 1090: ;Böden als Quelle und Senke für CO2 die Pools der löslichen abbaubaren und schwer schwer löslichen, schwer abbaubaren organischen Bodensubstanz (OBS) quantifiziert, die funktionelle Zusammensetzung dieser Pools mittels FT-IR Spektroskopie erfasst und Abbaubarkeit der erhaltenen Extrakte überprüft werden, um Mechanismen, die zur Stabilisierung der OBS führen, aufzuklären.
Das Projekt "Nachhaltige Nutzung Mariner Ressourcen (Submariner) - Interreg IVB BSR Project" wird vom Umweltbundesamt gefördert und von Instytut Morski w Gdansku durchgeführt. The Baltic Sea Region (BSR) faces enormous challenges including growing transport, new installations, fishery declines, severe marine pollution with excessive nutrient input and the effects of climate change. But the future is not all bleak: novel technologies and growing knowledge provide opportunities for new uses of marine ecosystems, which may in the future not only have commercial appeal but also contribute to solve environmental problems. Algae and mussel cultivation reduce nutrient inflow while providing a source for bioenergy; offshore wind farms can smartly be combined with mariculture or wave energy installations; blue biotechnology utilises substances from marine organisms for development of new products that can improve overall BSR health. All these uses and technologies have, however, not been tested sufficiently within the fragile conditions of the Baltic Sea and their cumulative impacts on the environment, economic feasibility and regional applicability are not yet fully understood. It is thus currently difficult for decision-makers to judge which uses are most desirable and what actions are necessary to create a framework beneficial to their development while discouraging potentially damaging uses. SUBMARINER builds the road for furthering those environmentally friendly as well as economically appealing innovative uses within the BSR, thus contributing toward its aim to become a model region for sustainable sea management.
Das Projekt "ALPCHANGE - Klimawandel und Auswirkungen in südösterreichischen Hochgebirgsräumen" wird vom Umweltbundesamt gefördert und von Technische Universität Graz, Institut für Fernerkundung und Photogrammetrie durchgeführt. ALPCHANGE beschreibt quantitativ die durch den Klimawandel verursachte Landschaftsdynamik in alpinen Regionen Südösterreichs. Dies geschieht durch die integrative und umfassende Analyse aus Beobachtungsdaten der vier Landschaftsparameter Permafrost, Gletscher, Schnee und Geomorphologie. Diese Parameter reagieren zeitlich unterschiedlich auf geänderte Umweltbedingungen und liefern so Informationen in verschiedenen Zeitebenen: Schnee unmittelbar, Gletscher und geomorphologische Strukturen innerhalb von Jahren bis Jahrzehnten bzw. Permafrost innerhalb von Jahrzehnten bis Jahrhunderten. Diese Zusammenhänge werden mittels eines umfassenden Monitoring-Netzwerkes in den Hohen Tauern durchgeführt zum ersten Mal in Südösterreich. Die Interdisziplinarität dieses Forschungsansatzes Glaziologie, Hochgebirgsgeographie, Geophysik, Atmosphärenphysik, Geologie versammelt viele nationale wie auch internationale Institutionen in einer Arbeitsgemeinschaft. Wissenschaftler verschiedener Institute an der Universität Graz bzw. der Technischen Universität Graz sind seit Jahrzehnten in den Forschungsbereichen Klima- und Umweltwandel aktiv. ALPCHANGE ist unter anderem auch aus jenen Initiativen entstanden, die zur Gründung des Wegener Zentrums für Klima und Globalen Wandel (WegCenter) führten.
Das Projekt "Energie System 2050 (ES 2050)" wird vom Umweltbundesamt gefördert und von Rheinisch-Westfälische Technische Hochschule Aachen University, E.ON Energy Research Center, Lehrstuhl für Gebäude- und Raumklimatechnik durchgeführt. 'Energie System 2050' (ES 2050) ist eine gemeinsame Initiative des Forschungsgebiets 'Energie' der Helmholtz Gemeinschaft. Das übergeordnete Ziel liegt darin, greifbares und übertragbares Wissen sowie technologische Lösungen auf Systemebene zu entwickeln, welche von Politik und Wirtschaft zur Unterstützung der Energiewende genutzt werden können. Die deutsche Energiewende ist ein ehrgeiziges und umfassendes Projekt, welches weit in die Zukunft hinaus reicht und ein flexibles Re-Design der Energiesysteme bis 2050 erforderlich macht. In diesem Zusammenhang analysiert ES 2050 die Integration von wesentlichen Technologieelementen in das Energiesystem und entwickelt Lösungen zur erfolgreichen Integration von volatilen erneuerbaren Energieerzeugungseinheiten in das Deutsche und Europäische Energieversorgungssystem. Fünf Forschungsthemen adressieren die grundlegenden Herausforderungen der Energiewende: - Speicher und Netze - Biogene Energieträger - Energie- und Rohstoffpfade mit Wasserstoff - Lebenszyklusorientierte Nachhaltigkeitsanalyse auf Systemebene - Toolbox mit Datenbanken Mittels eines interdisziplinären Ansatzes, in welchem verschiedene Forschungszentren involviert werden, wird die ES 2050 Forschung auf Systemebene ganzheitlich ermöglicht. In einer Partnerschaft mit KIT (Karlsruher Institut für Technologie) und JARA (Jülich Aachen Research Alliance), tragen die zwei Institute Energy Efficient Buildings and Indoor Climate (EBC, Prof. D. Müller) und Automation of Complex Power Systems (ACS, Prof. A. Monti) aktiv zu dem Forschungsthema fünf 'Toolbox mit Datenbanken' bei. Dieses beinhaltet unter anderem die Entwicklung einer open source Plattform für Monitoring und Datenanalyse von Energiesystemen unter der Verantwortung von ACS. Die Forschung zielt auf die Definition einer Plattform Architektur, welche einen modularen Ansatz sowie die Kompatibilität zu etablierten Standards unterstützt, ebenso wie die Definition von Datenmodellen zur Integration heterogener Akteure.
Das Projekt "B 2: Lateral water flow and transport of agrochemicals - Phase 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The project aims at developing a model of the dynamics of agrochemicals (fertilisers, pesticides) and selected heavy metals on a regional scale as a function of cropping intensity in the highland areas of Northern Thailand. The model shall predict the effects of cropping intensity on mobility and leaching of agrochemicals in the agriculturally used system itself but also on the chemical status of neighbouring ecosystems including downstream areas. The methods for measuring and estimating the fluxes of agrochemicals in soils will be adapted to the conditions of the soils and sites in Northern Thailand. Fluxes of agrochemicals will be measured in fruit tree orchards on the experimental sites established together with projects B1, C1 and D1. Also, processes governing the dynamics of agrochemicals will be studied. The objectives for the first phase are as follows: - To identify suitable study sites - To establish the methods for measuring the fluxes of agrochemicals in the study sites - To adopt the analytical procedures for pesticides - To identify and parametrise the processes governing the mobility of agrochemicals - To identify the major chemical transformation processes for agrochemicals in the soils of the project area - To establish models of the fate of agrochemicals an the plot scale. Dynamics of agrochemicals include processes of mobilisation/immobilisation, degradation and transport. Both, experiments and field inventories are needed to elucidate the complex interaction of the various processes. Field measurements of the fluxes of nutrient elements (N, P, K, Ca, Mg, Mn, Zn, Cu), pesticides and some heavy metals will be conducted at different regional scales (plot, agricultural system, small catchment, region). Laboratory and field experiments consider chemical, physicochemical and biological processes. Biological processes and degradation of pesticides will not be considered in the first phase of the project, however, they should be included later on. The project as a whole is broken down into three essential parts, which consecutively follow each other. The subproject is methods- and processes-orientated. Methods, which were developed in Hohenheim to quantify the fluxes of chemicals in soils have to be adapted to meet the requirements of the specific conditions in the study area. Recently, these methods are already under development in tropical environments (Vietnam, Costa Rica). After adaptation the methods will be used to yield flux data on the plot scale. These data are needed to help deciding which of the hypothesised processes are of major importance for modelling the dynamics of agrochemicals. The final outcome of this project phase are models of the fate of agrochemicals as a function of management intensity on the plot scale.
Das Projekt "Impact of transgenic crops on fertility of soils with different management history" wird vom Umweltbundesamt gefördert und von Forschungsinstitut für biologischen Landbau Deutschland e.V. durchgeführt. What impact does transgenic maize have on soil fertility? Among the factors that determine soil fertility is the diversity of the bacteria living in it. This is in turn affected by the form of agriculture practiced on the land. What role do transgenic plants play in this interaction? Background Soil fertility is the product of the interactions between the parental geological material from which the soil originated, the climate and colonization by soil organisms. Soil organisms and their diversity play a major role in soil fertility, and these factors can be affected by the way the soil is managed. The type of farming, i.e. how fertilizers and pesticides are used, has a major impact on the fertility of the soil. It is known that the complex interaction of bacterial diversity and other soil properties regulates the efficacy of plant resistance. But little is known about how transgenic plants affect soil fertility. Objectives The project will investigate selected soil processes as indicators for how transgenic maize may possibly alter soil fertility. The intention is in particular to establish whether the soil is better able to cope with such effects if it contains a great diversity of soil bacteria. Methods Transgenic maize will be planted in climate chambers containing soils managed in different ways. The soil needed for these trials originates from open field trials that have been used for decades to compare various forms of organic and conventional farming. These soils differ, for example, in the way they have been treated with pesticides and fertilizers and thus also with respect to their diversity of bacteria. The trial with transgenic maize will measure various parameters: the number of soil bacteria and the diversity of their species, the quantity of a small number of selected nutrients and the decomposition of harvest residues. It will be possible to conclude from this work how transgenic plants affect soil fertility. Significance The project will create an important basis for developing risk assessments that incorporate the effects of transgenic plants on soil fertility.
Das Projekt "Forest management and habitat structure - influences on the network of song birds, vectors and blood parasites" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.
Das Projekt "Forest management in the Earth system" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Origin | Count |
---|---|
Bund | 305 |
Type | Count |
---|---|
Förderprogramm | 305 |
License | Count |
---|---|
offen | 305 |
Language | Count |
---|---|
Deutsch | 305 |
Englisch | 279 |
Resource type | Count |
---|---|
Keine | 242 |
Webseite | 63 |
Topic | Count |
---|---|
Boden | 265 |
Lebewesen & Lebensräume | 282 |
Luft | 230 |
Mensch & Umwelt | 305 |
Wasser | 234 |
Weitere | 305 |