The project DIGSTER - Map and Go (Digital Based Terrain Mapping) aims at the technical aspects of digital terrrain mapping. For many questions in administration, planning and expertise terrrain mappings are indispensable. The whole process starting with the data acquisition in the field and ending with map products will be digitally performed by the system. Therefore, a platform appropriate for the use in the field (PDA) is combined with technologies from the disciplines of satellite navigation, remote sensing, communication, and mobile geoinformation systems. For DIGSTER a lot of practical applications already exist in connection with policies and directives on the national and also European level.
In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids, nutrients and pollutants. Both sides are closely related and affect each other from small scale to larger scale. Soil structures such as aggregates, roots, layers, macropores and wettability differences occurring in natural soils enhance the patchiness of these distributions. At the same time the spatial distribution and temporal dynamics of these important parameters is difficult to access. By applying non-destructive measurements it is possible to overcome these limitations. Our non-invasive fluorescence imaging technique can directly quantity distribution and changes of oxygen and pH. Similarly, the water content distribution can be visualized in situ also by optical imaging, but more precisely by neutron radiography. By applying a combined approach we will clarify the formation and architecture of interfaces induces by oxygen consumption, pH changes and water distribution. We will map and model the effects of microbial and plant root respiration for restricted oxygen supply due to locally high water saturation, in natural as well as artificial soils. Further aspects will be biologically induced pH changes, influence on fate of chemicals, and oxygen delivery from trapped gas phase.
Die Grenzfläche zwischen Ozean und Atmosphäre ist durch einen allgegenwärtigen, < 1 mm dicken marinen Oberflächenfilm, den sogenannten sea-surface microlayer (SML), charakterisiert. Der SML ist nicht nur direkter UV-Strahlung und atmosphärischen Oxidantien ausgesetzt, sondern zeichnet sich im Vergleich zum unterliegenden Wasser auch durch höhere Konzentrationen an organischen Stoffen aus. Bisher ist unklar, welche Bedeutung die dadurch bedingten SML-spezifischen abiotischen Prozesse für die Umsetzung und die Emission organischer Stoffe insgesamt haben und wie man diese Prozesse parametrisieren kann. In diesem Projekt, das eng mit anderen Projekten der interdisziplinären Forschungsgruppe â€ÌBiogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS)â€Ì verbunden ist, sollen daher molekulare Details SML-spezifischer Reaktionen (Photochemie, heterogene Oxidation, Radikalchemie) genauer untersucht werden. Ziel ist es, Reaktionsprodukte und -geschwindigkeiten quantitativ zu erfassen und Unterschiede zwischen Reaktionen im SML und in der freien Wassersäule herauszuarbeiten. Basierend auf der Expertise der drei beteiligten Arbeitsgruppen im Bereich Photochemie, Reaktionskinetik, Laserspektroskopie, Analytik und theoretischer Modellierung, soll ein molekulares Verständnis ausgewählter Reaktionen und des Einflusses der komplexen SML-Reaktionsumgebung erreicht werden. Dazu sollen experimentelle Verfahren wie Schwingungs-Summenfrequenzerzeugung, hochempfindliche Chromatographie-Massenspektrometrie und gepulste Laserphotolyse-Langwegabsorption mit Methoden der Quantenchemie und Molekulardynamik kombiniert werden. Arbeitsschwerpunkte bilden die Oxidationskinetik von Halogen- bzw. Hydroxyl-Radikalreaktionen in der flüssigen Phase, die Ozonolyse von Fettsäure-Monoschichten und die durch Photosensibilisatoren verstärkte Bildung von reaktiven Radikalen bzw. Zersetzung von organischen Schichten. Neben wohldefinierten Labor-Modellsystemen werden auch natürliche Proben analysiert werden. Dabei stellt sich z.B. die Frage nach den Einflussfaktoren der während einer Algenblüte zunehmenden Bildung von oberflächenaktiven Stoffen im SML und der Bedeutung der durch die Sonne bedingten Photolyse auf die abiotische Umsetzung organischer Stoffe. Flankierend werden im Projekt auch die eingesetzten Untersuchungsmethoden weiterentwickelt; das beinhaltet sowohl die Ausarbeitung von Messprotokollen zur Quantifizierung bestimmter organischen Substanzklassen (z.B. Carbonyle und Kohlenhydrate) im SML, die Synthese und Charakterisierung von neuartigen oberflächenaktiven Photosensibilisatoren (z.B. Benzoyl-Benzoesäure-funktionalisierte Lipide) sowie die Entwicklung und Erprobung mehrstufiger Modellierungsverfahren zur theoretischen Beschreibung von Struktur-Reaktivitätsbeziehungen der Fettsäure-Ozonolyse (z.B. Beschreibung des Einflusses sterischer und elektronischer Effekte der organischen Matrix).
The detritusphere is an excellent model to study microbial-physicochemical interactions during degradation of the herbicide MCPA. Whereas during the first phase of SPP 1315 we focused on bacterial and fungal abundance at the soil litter interface and carbon flow between different compartments, the second phase will be devoted to elucidating complex regulation mechanisms of MCPA degradation in the detritusphere: (1) At the cellular level, co-substrate availability and laccase abundance might be important regulators, (2) at the community level, bacteria harbouring different classes of tfdA genes might control degradation of MCPA and (3) at the microhabitat level, interaction between MCPA degraders and organo-mineral surfaces as well as transport processes might be important regulators. The concept of hierarchical regulation of MCPA degradation will be included into the modelling of small-scale microbial growth, MCPA transport and MCPA degradation near the soil-litter interface.
The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
We study population biology and life histories of DSE. Dark septate root endophytes (DSE) are ubiquitous fungal tree root colonizers in temperate and boreal conifer forest ecosystems. The supposedly asexual Phialocephala fortinii was identified as the main component of these DSE but constitutes a species complex in its own right. Species in this complex are morphologically indistinguishable with one exceptition; Acephala applanata was described as a new species which is characterized by the absence of aerial mycelium and slow growth rate. Application of biological, phylogenetic and population genetic species concepts will allow to discriminate additional species. The experimental programme is multi-disciplinary in approach, utilizing classical mycological and molecular genetic techniques.
Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.
Neben Studien zur Diversität von Gefäßpflanzen in ausgewählten Untersuchungsflächen wurde der Erforschung der endemischen Palmenart Normanbya normanbyi besondere Aufmerksamkeit gewidmet. Im Mittelpunkt stehen Studien zur Blüten- und Fruchtökologie. Dabei wurde u.a. eine bisher unbeschriebene Gattung der Gallmücken entdeckt. Der interdisziplinäre Forschungsansatz soll wesentliche Erkenntnisse über Tier-Pflanze-Interaktionen in Regenwäldern liefern. Hauptaugenmerk liegt auf der Erfassung der Blüten- und Fruchtphänologie eines tropischen Tieflandregenwaldes in Nordostqueensland. Das Projekt beinhaltet die Erfassung der Phänologie aller Unterwuchsarten, Lianen und Baumarten in einer 1 ha großen Untersuchungsfläche. Weiterführend wird die Blühphänologie einer ausgewählten Palmenart Normanbay normanbyi erfasst und mit Hilfe molekulargenetischer Methoden im Zusammenhang mit der Verwandtschaftsstruktur ausgewählter Populationen betrachtet. Die Feldarbeiten für das 2003 begonnene Projekt wurden im Juli 2005 abgeschlossen.
Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.
Comprehension of belowground competition between plant species is a central part in understanding the complex interactions in intercropped agricultural systems, between crops and weeds as well as in natural ecosystems. So far, no simple and rapid method for species discrimination of roots in the soil exists. We will be developing a method for root discrimination of various species based on Fourier Transform Infrared (FTIR)-Attenuated Total Reflexion (ATR) Spectroscopy and expanding its application to the field. The absorbance patterns of FTIR-ATR spectra represent the chemical sample composition like an individual fingerprint. By means of multivariate methods, spectra will be grouped according to spectral and chemical similarity in order to achieve species discrimination. We will investigate pea and oat roots as well as maize and barnyard grass roots using various cultivars/proveniences grown in the greenhouse. Pea and oat are recommendable species for intercropping to achieve superior grain and protein yields in an environmentally sustainable manner. To evaluate the effects of intercropping on root distribution in the field, root segments will be measured directly at the soil profile wall using a mobile FTIR spectrometer. By extracting the main root compounds (lipids, proteins, carbohydrates) and recording their FTIR-ATR spectra as references, we will elucidate the chemical basis of species-specific differences.
| Origin | Count |
|---|---|
| Bund | 305 |
| Type | Count |
|---|---|
| Förderprogramm | 305 |
| License | Count |
|---|---|
| offen | 305 |
| Language | Count |
|---|---|
| Deutsch | 74 |
| Englisch | 284 |
| Resource type | Count |
|---|---|
| Keine | 242 |
| Webseite | 63 |
| Topic | Count |
|---|---|
| Boden | 258 |
| Lebewesen und Lebensräume | 294 |
| Luft | 221 |
| Mensch und Umwelt | 303 |
| Wasser | 225 |
| Weitere | 305 |