API src

Found 633 results.

Similar terms

s/genetische-vielfalt/Genetische Vielfalt/gi

Berliner Biotopverbund

Um zu überleben und sich fortpflanzen zu können, sind viele Arten darauf angewiesen, zwischen Lebensräumen zu pendeln. Tiere wandern zwischen Winter- und Sommerquartier oder zwischen Futterquellen und Nist- oder Laichstätten. Dabei tragen sie zur Verbreitung von Pflanzen bei. Ein Austausch zwischen Populationen ist also immens wichtig. Er bewahrt die genetische Vielfalt, macht eine natürliche Ausbreitung- und auch Wiederbesiedelungen möglich. Wenn Stadt und Verkehrswege unbedacht ausgebaut werden, kann das Biotope isolieren. Sie verinseln. Damit verarmt die biologische Vielfalt. Das Bundesnaturschutzgesetz schreibt deshalb seit 2002 vor, den Biotopverbund zu fördern, sprich: Lebensräume zu vernetzen. Auch in Stadtstaaten sollen solche Verbindungen mindestens 10 Prozent der Fläche ausmachen. Die Umsetzung ist Ländersache. Berlin hat 34 Zielarten festgelegt, die besonders auf solche Verknüpfungen angewiesen sind. Von ihrem Schutz profitieren viele andere Arten. Für jede Zielart wurden die Kernflächen ihrer aktuellen Verbreitung und geeignete neue Lebensräume kartiert. So wurde klar, welche Verbindungen nötig sind. Diesen Biotopverbund zu verwirklichen, ist ein grundlegendes Ziel des Berliner Landschaftsprogramms und seit 2012 auch Ziel der Berliner Strategie zur Biologischen Vielfalt. Die Charta für das Berliner Stadtgrün hat das 2019 bestätigt. Unterschutzstellung von Natur und Landschaft Charta für das Berliner Stadtgrün Die Gemeine Grasnelke könnte sich vom Tempelhofer Feld auf ungewöhnlichem Wege ausbreiten: über das magere Grün des S-Bahn Rings. Ähnlich bei der Rotbauchunke: Die seltene Art kommt in Berlin nur noch in den Weihern der Wartenberger Feldmark und der Hönower Weiherkette vor. Die Malchower Aue wäre ein neuer Lebensraum: Die Auenlandschaft soll als Leitprojekt über das Berliner Ökokonto aufgewertet werden. Um sie zu besiedeln, brauchen die Unken aber eine Verbindung dorthin. Die schafft der grüne Korridor des Hechtgrabens. Selbst Bahndämme und Kanäle sind also wichtig für die biologische Vielfalt. Gerade sie lassen sich ökologisch aufwerten, um Hemmschwellen zu beseitigen. Weitere Informationen zum Berliner Ökokonto „Liebesinsel“ und „Kratzbruch“ sind zwei Inseln in Friedrichshain, die unter Naturschutz stehen. Seit 2020 werden ihre sensiblen Uferzonen renaturiert. Reihen vorgelagerter Holzpfähle schützen in Zukunft die Flachwasserbereiche vor Wellenschlag und Erosion. Im Schutz dieser Holzpfahlreihen wird Röhricht angepflanzt. Biber, Graureiher, Kormorane und die übrige Tier- und Pflanzenwelt profitieren davon. Damit die Tiere immer einen Ort haben, um sich zurückzuziehen, werden die Arbeiten schrittweise in Angriff genommen. Biotopverbund Biotopverbundsystem

Genetische Diversität und Struktur der Kiefer in Deutschland - Eine Grundlage für den Schutz und die nachhaltige Nutzung der genetischen Vielfalt

Im Zuge der vierten Bundeswaldinventur (BWI2022) wurden erstmals in ganz Deutschland Proben für die genetische Inventur von sieben Hauptbaumarten gesammelt. Diese durch die Thünen-Institute für Waldökosysteme und Forstgenetik koordinierte deutschlandweite, flächenrepräsentative Probennahme ermöglicht erstmalig einen wirklich fundierten und umfassenden Überblick über die genetische Vielfalt sowie die räumliche Struktur der genetischen Diversität der wichtigsten Waldbaumarten in Deutschland. Anhand der deutschlandweit eingesammelten Proben soll eine hochaufgelöste Karte der genetischen Vielfalt und Struktur der Waldkiefer (Pinus sylvestris L.) erstellt werden. Die Erstellung einer solchen Karte gibt Aufschluss über die aktuelle genetische Vielfalt der Kiefer in Deutschland, die räumliche Verteilung dieser genetischen Vielfalt und den Zusammenhang zwischen genetischer Struktur und Umwelt- sowie Standortfaktoren. Die Kenntnis der genetischen Variation und ihrer Muster ist eine notwendige Grundlage für die nachhaltige Nutzung und Erhaltung forstgenetischer Ressourcen. Das Vorhaben dient damit der genetisch nachhaltigen Bewirtschaftung der Kiefer, dem Schutz ihrer lokalen genetischen Variation und bildet die Grundlage für ein Monitoring künftiger Veränderungen. Es verfolgt somit sowohl forstliche als auch naturschutzfachliche Ziele.

Genetische Grundlagen für das Überleben der Birkhuhnpopulationen in Europa

Das Birkhuhn (Tetrao tetrix), einst typischer Bewohner von Moor- und Heidelandschaften, lebt in Deutschland außerhalb der Alpen nur noch in kleinen isolierten Vorkommen. Aufforstungen von Heideflächen und die Entwässerung und Kultivierung von Mooren reduzierten seinen Bestand. Heute steht das Birkhuhn als vom Aussterben bedrohte Art auf der Roten Liste der Brutvögel Deutschlands. Allein in Niedersachsen, wo außerhalb der Alpen noch der größte Birkhuhnbestand lebt, sank die Zahl der Tiere innerhalb der letzten 30 Jahre von rund 4.000 auf heute 200. Das Projekt untersucht die für den Artenschutz zentrale Frage, wie sich die voneinander isolierten Populationen in Deutschland an Veränderungen ihrer Lebensräume anpassen. Daraus sollen dann konkrete Empfehlungen für den Schutz des Birkhuhns abgeleitet werden.

Wo ist die biologische Vielfalt in der Schweiz am grössten?

Modelle der WSL zeigen, welche Landschaften in der Schweiz besonders reich an Farn- und Blütenpflanzen sind und welche Einflussgrössen deren Artenvielfalt bestimmen. Die Arbeiten liefern Grundlagen, damit wir die biologische Vielfalt in der Schweiz besser verstehen, schützen und fördern können. Die biologische Vielfalt umfasst alle Tier- und Pflanzenarten, die genetische Vielfalt ihrer Individuen sowie die Vielfalt der Lebensräume. Die biologische Vielfalt der Schweiz ist gross: Wissenschaftler schätzen, dass es hierzulande rund 50 000 Tier- und Pflanzenarten gibt1. Die Schweiz hat sich 1992 mit der Unterzeichnung der Biodiversitätskonvention von Rio verpflichtet, diese Vielfalt zu überwachen, zu erhalten und zu fördern. Das Bundesamt für Umwelt (BAFU) überwacht seit 2001 die biologische Vielfalt der Schweiz mit dem Biodiversitätsmonitoring (BDM). Da es unmöglich ist, die ganze Vielfalt zu erfassen, konzentriert sich das BDM auf Kennzahlen, die wichtige Aspekte der Vielfalt repräsentieren. Diese Kennzahlen zeigen, ob die biologische Vielfalt wächst oder schrumpft. Eine dieser Kennzahlen erfasst die Artenvielfalt an Farn- und Blütenpflanzen (Gefässpflanzen) in verschiedenen Landschaften (Koordinationsstelle Biodiversitätsmonitoring Schweiz (2006) Zustand der Biodiversität in der Schweiz. Umwelt-Zustand Nr. 0604. Bundesamt für Umwelt, Bern. ). Modelle der WSL liefern Karten der Pflanzenvielfalt in der Schweiz: Auf rund 500 Probeflächen, die regelmässig über die ganze Schweiz verteilt sind, erfasst das BDM die Artenvielfalt an Gefässpflanzen in der Landschaft. Trotz der grossen Anzahl liefern die Probeflächen nur punktuelle Informationen. Die WSL hat deshalb die Artenzahlen des BDM verwendet, um die Artenvielfalt für die gesamte Schweiz zu modellieren. Mit Hilfe dieser Modelle kann die Pflanzenvielfalt flächendeckend vorhergesagt werden.

Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt B01: Biogeographische Geschichte von Pflanzengesellschaften

Vier Fragestellungen stehen hierbei im Mittelpunkt: 1) Wie setzt sich die Vegetation im extrem trockenen Kernbereich der Atacama zusammen und welchen räumlichen und zeitlichen Schwankungen ist sie unterlegen? 2) Erfolgte die Besiedlung und Diversifizierung korreliert mit klimatischen und geologischen Ereignissen, welche als Ursache für die Aridität der Atacama zu sehen sind? 3) Sind diversifizierte Pflanzengruppen in der Atacama das Produkt einer einmaligen oder mehrmaligen Kolonisierung? 4) Spiegelt sich die Fragmentierung ausgewählter Arten in der Atacama in der genetischen Diversität wider oder wird diese positiv durch die Samenbank bzw. Ausbreitungsereignisse beeinflusst. Um diese Fragen zu beantworten, schlagen wir eine Kombination floristischer und molekularbiologischer Methoden vor: floristische Aufnahmen, ex-situ Kultivierung, molekulare Phylogenien ausgewählter und artenreicher Atacama Gruppen, sowie Populationsgenetik von Modelarten.

BiodivProtect: Neue Methoden zur Ermittlung von Key Biodiversity Areas für die Ausweitung des Europäischen Schutzgebietsnetzwerks (GaP) - Bewertung distinkter genetischer Diversität

Untersuchung der natürlichen Antagonisten des Eichenprozessionsspinners in Deutschland

Im Verbundprojekt werden die Vielfalt an EPS-Pathogenen und EPS-Parasiten, -Parasitoiden und -Prädatoren, wie auch die Intensität des Befalls in verschiedenen Entwicklungsstadien des EPS und in unterschiedlichen standörtlichen und klimatischen Bedingungen systematisch erfasst. In unserem Teilvorhaben (TP1) wird die genetische Ausstattung der EPS-Populationen untersucht. In einem Transekt von Norden bis Süden Deutschlands werden EPS befallene Gebiete als Versuchsflächen von allen Projektpartnern gemeinsam ausgesucht. Diese Gebiete sollen möglichst unterschiedliche klimatische/standörtliche Bedingungen, wie auch eine unterschiedliche Kalamitätsgeschichte, darstellen, damit möglichst viele Faktoren, bei der Auswertung der genetischen Strukturen der EPS-Populationen berücksichtigt werden können. Diese EPS-Populationen werden mittels molekulargenetischer Marker genetisch untersucht. Dabei werden zwei mitochondrialer Gene (COI und COII) sequenziert um Differenzen zwischen EPS-Individuen festzustellen. Weiterhin werden nukleare Mikrosatelliten Marker (SSRs) angewendet, um die genetische Variabilität innerhalb und die genetische Differenzierung zwischen Populationen zu erfassen. In diesem Schritt werden bekannte, erfolgreiche SSRs aus dem Pinien- auf den Eichenprozessionsspinner übertragen. Die am besten funktionierenden und variablesten SSRs werden für die Erfassung der genetischen Strukturen der EPS-Populationen verwendet. Sowohl die Sequenzierung der COI-Gene als auch die Fragmentanalyse der SSRs werden mittels Kapillarlektrophorese an einem DNA-Sequenzer durchgeführt. Die räumlichen genetischen Strukturen und die phylogenetische Bäume werden in Zusammenhang mit den standörtlichen/klimatischen/Kalamitätsgeschichtlichen Faktoren Auskunft über die Abstammung/Entstehung der Populationen geben. In der Gesamtauswertung im Verbundprojekt wird die genetische Diversität der EPS-Populationen mit der Vielfalt der Antagonistenvielfalt und die Befallsidensität korreliert werden.

Untersuchungen zur Hybridzüchtung bei Triticale

Obwohl bei Triticale partielle Fremdbefruchtung vorkommt, werden derzeit bei der Entwicklung neuer Sorten Methoden der Linienzüchtung eingesetzt. Untersuchungen zur Heterosis lassen jedoch erkennen, dass die Hybridzüchtung eine aussichtsreiche Alternative zur Linienzüchtung darstellt. Es gilt nun, die genetischen und methodischen Grundlagen zu untersuchen, ein stabiles System für die cytoplasmatisch männliche Sterilität (CMS) zu etablieren und die Restorerfähigkeit zu analysieren. Auf Basis von Untersuchungen zur genetischen Diversität werden Konzepte zur Entwicklung Heterotischer Gruppen erarbeitet.

Schutz und Wiederansiedlung von Seegraswiesen in der südlichen Ostsee, Vorhaben: Hochskalierung von Seegras-Renaturierung mittels Aussaat-basierten Methoden

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Biological soil crust algae in the polar regions - biodiversity, genetic diversity and ecosystem resilience under global change scenarios

Terrestrial green algae and cyanobacteria are typical and abundant components of biological soil crusts in the Polar Regions. These communities form water-stable aggregates that have important ecological roles in primary production, nitrogen fixation, nutrient cycling, water retention and stabilization of soils. Although available data on green algae and cyanobacteria are generally very limited for the Arctic and Antarctica, their functional importance as ecosystem developers in nutrient poor environments is regarded as high. Therefore, the main goal of the interdisciplinary project is, for the first time, a precise evaluation of their 1.) Biodiversity as well as of 2.) The infra-specific genetic diversity, 3.) ecophysiological performance and 4.) transcriptomics of the most abundant taxa in biological soil crusts isolated from the Antarctic Peninsula and Arctic Svalbard. Biodiversity will be investigated using a classical culture approach in combination with molecular-taxonomical methods as well as with metagenomics. The infra-specific genetic diversity of the most abundant green algae and cyanobacteria will be studied using fingerprinting techniques, and a range of selected populations characterized in relation to their physiological plasticity. Temperature and water availability, two key environmental factors for terrestrial organisms, are currently changing in Polar Regions due to global warming, and hence their effect on growth and photosynthesis response patterns will be comparatively investigated. The data will indicate whether and how global change influence population structure and ecological performance of key organisms in polar soil crusts, and help to make predictions on the future significance of the ecological functions of these pioneer communities. Such a multiphasic approach has never been applied before to soil algae and cyanobacteria in both Polar Regions, and hence represents one of the key innovations of this proposal.

1 2 3 4 562 63 64