s/genetische-vielfalt/Genetische Vielfalt/gi
Der Schutz der biologischen Vielfalt umfasst auch die genetische Vielfalt innerhalb der Arten. Nach § 40 Abs. 4 S. 4 Nr. 4 BNatSchG sollen daher in der freien Natur Gehölze und Saatgut vorzugsweise nur innerhalb ihrer Vorkommensgebiete ausgebracht werden, d.h. es sollen Pflanzen verwendet werden, die ihren genetischen Ursprung in dem entsprechenden Gebiet haben (gebietseigene Herkünfte). Die Datengrundlage der Vorkommensgebiete wird vom BfN zur Verfügung gestellt. Durch das LfU erfolgte darauf basierend eine Überarbeitung der Originaldaten, in der eine weitere Unterteilung der Vorkommensgebiete aufgrund der unterschiedlichen, naturräumlichen Gegebenheiten stattfand, welche in diesem Datensatz abgebildet ist.
In extension of a previous project dedicated to study the genetic diversity of the so-called Tugai forests in the extremely arid Tarim basin of Chinas Xinjiang province, we want to investigate reproductive biology and the performance of sexes in Populus euphratica, as well as the gene flow between stands to explain the high degree of genetic diversity distributed within stands. This should allow deriving sound recommendations for a conservation strategy of the Tugai forests. In addition, we want to extent the existing body of data on mapped and genotyped old-growth stands to derive a sex aggregation index and show its usefulness for estimating stand clonality by comparison with the clonality index derived from microsatellite genotyping. Due to a change of methods for genotyping (from AFLP to a high-throughput microsatellite multiplex PCR) we saved money to genotype three more stands. This will provide consumables for one Ph.D. student (currently payed by a scholarship from the state of Mecklenburg-Western Pomerania) to complete her Ph.D. thesis.
Das Birkhuhn (Tetrao tetrix), einst typischer Bewohner von Moor- und Heidelandschaften, lebt in Deutschland außerhalb der Alpen nur noch in kleinen isolierten Vorkommen. Aufforstungen von Heideflächen und die Entwässerung und Kultivierung von Mooren reduzierten seinen Bestand. Heute steht das Birkhuhn als vom Aussterben bedrohte Art auf der Roten Liste der Brutvögel Deutschlands. Allein in Niedersachsen, wo außerhalb der Alpen noch der größte Birkhuhnbestand lebt, sank die Zahl der Tiere innerhalb der letzten 30 Jahre von rund 4.000 auf heute 200. Das Projekt untersucht die für den Artenschutz zentrale Frage, wie sich die voneinander isolierten Populationen in Deutschland an Veränderungen ihrer Lebensräume anpassen. Daraus sollen dann konkrete Empfehlungen für den Schutz des Birkhuhns abgeleitet werden.
Im Zuge der vierten Bundeswaldinventur (BWI2022) wurden erstmals in ganz Deutschland Proben für die genetische Inventur von sieben Hauptbaumarten gesammelt. Diese durch die Thünen-Institute für Waldökosysteme und Forstgenetik koordinierte deutschlandweite, flächenrepräsentative Probennahme ermöglicht erstmalig einen wirklich fundierten und umfassenden Überblick über die genetische Vielfalt sowie die räumliche Struktur der genetischen Diversität der wichtigsten Waldbaumarten in Deutschland. Anhand der deutschlandweit eingesammelten Proben soll eine hochaufgelöste Karte der genetischen Vielfalt und Struktur der Waldkiefer (Pinus sylvestris L.) erstellt werden. Die Erstellung einer solchen Karte gibt Aufschluss über die aktuelle genetische Vielfalt der Kiefer in Deutschland, die räumliche Verteilung dieser genetischen Vielfalt und den Zusammenhang zwischen genetischer Struktur und Umwelt- sowie Standortfaktoren. Die Kenntnis der genetischen Variation und ihrer Muster ist eine notwendige Grundlage für die nachhaltige Nutzung und Erhaltung forstgenetischer Ressourcen. Das Vorhaben dient damit der genetisch nachhaltigen Bewirtschaftung der Kiefer, dem Schutz ihrer lokalen genetischen Variation und bildet die Grundlage für ein Monitoring künftiger Veränderungen. Es verfolgt somit sowohl forstliche als auch naturschutzfachliche Ziele.
Im Gegensatz zu anderen landwirtschaftlichen Arten sind die im Weinbau verwendeten Sorten sehr alt, Riesling mindesten 500 Jahre, Spätburgunder mindestens 1000 Jahre. Reben werden vegetativ vermehrt und im Laufe der Zeit haben sich durch Mutationen bei traditionellen Sorten zahlreiche Spielarten entwickelt. Gelegentlich betreffen diese Veränderungen deutlich sichtbare Merkmale wie die Blattbehaarung oder die Beerenfarbe. So entstanden aus dem blauen Spätburgunder die Sorten Ruländer und Weißburgunder. Doch die meisten dieser genetischen Veränderungen bleiben unscheinbar, wie eine veränderte Beerengröße, Beerenstiellänge, Seitentriebbildung oder Säuregehalt der Früchte. Es sind jedoch gerade diese Veränderungen, die die Voraussetzungen für die Entwicklung neuer, den Belangen der Praxis besser angepasster Klone bildet. Diese erlauben des dem Winzer den für seine Produktionsziele besten Klon zu benutzen. So erfolgreich die deutsche Klonenselektion in den vergangenen 100 Jahren auch war, so gefährdet ist sie jedoch auch. Durch den Ersatz alter Weinberge, die noch nicht mit Klonen bepflanzt wurden, durch Klonen reine Bestände, verschwindet die genetische Vielfalt innerhalb alter traditioneller Sorten wie Riesling oder Burgunder. Damit reduziert sich gleichzeitig die Möglichkeit zur Entwicklung neuer Klone, die den Erfordernissen eines zunehmend kompetitiven globalen Marktes, gewachsen sind. Eine Erhaltung dieses Material ist daher dringend geboten. Zurzeit dürften weniger als 500ha der deutschen Rebfläche nicht mit Klonenmaterial bepflanzt sein. Viele dieser Weinberge stehen in sehr alten, schwer zugänglichen Steillagen an der Mosel und sind sowohl wegen ihres hohen Alters als auch ihrer geringen Wirtschaftlichkeit bedroht. Die Zahl nimmt durch Betriebsaufgaben und Flurbereinigungen ständig ab und damit auch die genetische Streubreite alter Sorten, wie Riesling. Zur Sicherung der genetischen Vielfalt innerhalb traditioneller deutscher Sorten sammelt das Fachgebiet in alten Rebanlagen phänotypisch interessant erscheinendes Material, testet es auf wirtschaftlich wichtige Viruserkrankungen und sichert gesundes Material in situ auf den Flächen des Fachgebiets bzw. denen von Partnerinstitutionen.
Das Ziel des Vorhabens ist es, durch Züchtungsforschung und Züchtung die Qualität der schmalblättrigen Süßlupine für die Verwendung im Food- und Feedbereich und damit die Anbauwürdigkeit zu verbessern. Durch die Einbeziehung bisher ungenutzter genetischer Ressourcen soll die genetische Diversität des vorhandenen Zuchtmaterials von Schmalblättriger Süßlupine bereichert und das genetische Ertragspotenzial dieser Kulturart gesichert und weiter verbessert werden. Hierbei liegt der Fokus auf der Entwicklung neuer Sorten mit umweltstabil niedrigen Alkaloidgehalten bei gleichzeitig hohem Ertragspotenzial.
Das Projekt Wildtiergenetik ist gedacht als Basisprojekt für populationsgenetische Untersuchungen an Wildtieren in Baden-Württemberg. Es hat eine Laufzeit von 2008 bis 2013. Es soll dazu dienen Fragestellungen rund um Wildtiere zu beantworten, die nicht oder nur sehr aufwendig mit herkömmlichen Methoden gelöst werden können. Zum Beispiel kann man mit Hilfe von Merkmalen der DNA Populationszugehörigkeiten berechnen. Aus diesen Informationen kann man dann Rückschlüsse auf Wanderbewegungen, Ausbreitungen, Barrieren zwischen Populationen oder Vermischungen zwischen Arten ziehen. Aktuell werden über das Projekt Fragen zur Ausbreitung der Wildkatze in Baden-Württemberg bearbeitet. Im Rahmen der Wildtiergenetik sind weiterhin populationsgenetische Untersuchungen zum Auerhuhn geplant. Ziel ist es mit genetischen Methoden die Verbreitung der Wildkatze in Baden-Württemberg zu erfassen. Darüber hinaus soll die Wildkatzenpopulation in den Rheinauen und am Kaiserstuhl genetisch charakterisiert werden. Es sollen Fragestellungen wie der Grad an Hybridisierung mit Hauskatzen, die Vernetzung mit benachbarten größeren Vorkommen und ihre Isolation untersucht werden. Grundlage für das Projekt ist das Wildkatzenmonitoring. Im Monitoring werden in ausgewählten Gebieten Wildkatzennachweise durch die Lockstockmethode gewonnen. Mit Baldrian besprühte Stöcke locken die Katzen an, beim Reiben an den Stöcken verlieren sie Haare, die dann im Labor genetisch auf als Wild- oder Hauskatze bestimmt werden. Für die genetischen Untersuchungen verwenden wir zwei verschiedene Ansätze. Das ist zum einen eine Sequenzierung von mitochondrialer DNA, zum anderen eine Längenfragmentanalyse mittels Mikrosatelliten. Inzwischen gilt in Baden-Württemberg die Wildkatze in der gesamten Oberrheinebene zwischen Karlsruhe und Lörrach, am Stromberg und mit vereinzelten Nachweisen im Osten Baden-Württembergs als sicher nachgewiesen. Seit 2006 konnten an 1022 aufgestellten Lockstöcken bisher insgesamt 633 Haarfunde und zusätzlich 54 Totfunde gesammelt und untersucht werden. Von den so insgesamt 687 Proben konnten 49% Wildkatzen, 27% Hauskatzen und 24% nicht zugeordnet werden. Bereits abgeschlossener Projektteil: In diesem ersten Teil wurde die genetische Struktur des Rotwildes in Baden-Württemberg untersucht. Die Fragestellung lautete, ob, ausgelöst durch die Beschränkung des Rotwildes auf sogenannte Rotwildgebiete und den Abschuss wandernden Rotwildes außerhalb dieser Gebiete, der genetische Austausch von Rotwild beeinträchtigt ist. Zur Beantwortung dieser Frage wurde die genetische Diversität der einzelnen Rotwildpopulationen Baden-Württembergs anhand von Mikrosatelliten analysiert. Dabei konnte gezeigt werden, dass die aktuellen Rotwildpopulationen nicht vollständig voneinander isoliert sind. (Text gekürzt)
Im Verbundprojekt werden die Vielfalt an EPS-Pathogenen und EPS-Parasiten, -Parasitoiden und -Prädatoren, wie auch die Intensität des Befalls in verschiedenen Entwicklungsstadien des EPS und in unterschiedlichen standörtlichen und klimatischen Bedingungen systematisch erfasst. In unserem Teilvorhaben (TP1) wird die genetische Ausstattung der EPS-Populationen untersucht. In einem Transekt von Norden bis Süden Deutschlands werden EPS befallene Gebiete als Versuchsflächen von allen Projektpartnern gemeinsam ausgesucht. Diese Gebiete sollen möglichst unterschiedliche klimatische/standörtliche Bedingungen, wie auch eine unterschiedliche Kalamitätsgeschichte, darstellen, damit möglichst viele Faktoren, bei der Auswertung der genetischen Strukturen der EPS-Populationen berücksichtigt werden können. Diese EPS-Populationen werden mittels molekulargenetischer Marker genetisch untersucht. Dabei werden zwei mitochondrialer Gene (COI und COII) sequenziert um Differenzen zwischen EPS-Individuen festzustellen. Weiterhin werden nukleare Mikrosatelliten Marker (SSRs) angewendet, um die genetische Variabilität innerhalb und die genetische Differenzierung zwischen Populationen zu erfassen. In diesem Schritt werden bekannte, erfolgreiche SSRs aus dem Pinien- auf den Eichenprozessionsspinner übertragen. Die am besten funktionierenden und variablesten SSRs werden für die Erfassung der genetischen Strukturen der EPS-Populationen verwendet. Sowohl die Sequenzierung der COI-Gene als auch die Fragmentanalyse der SSRs werden mittels Kapillarlektrophorese an einem DNA-Sequenzer durchgeführt. Die räumlichen genetischen Strukturen und die phylogenetische Bäume werden in Zusammenhang mit den standörtlichen/klimatischen/Kalamitätsgeschichtlichen Faktoren Auskunft über die Abstammung/Entstehung der Populationen geben. In der Gesamtauswertung im Verbundprojekt wird die genetische Diversität der EPS-Populationen mit der Vielfalt der Antagonistenvielfalt und die Befallsidensität korreliert werden.
Im Verbundprojekt werden die Vielfalt an EPS-Pathogenen und EPS-Parasiten, -Parasitoiden und -Prädatoren, wie auch die Intensität des Befalls in verschiedenen Entwicklungsstadien des EPS und in unterschiedlichen standörtlichen und klimatischen Bedingungen systematisch erfasst. In unserem Teilvorhaben (TP1) wird die genetische Ausstattung der EPS-Populationen untersucht. In einem Transekt von Norden bis Süden Deutschlands werden EPS befallene Gebiete als Versuchsflächen von allen Projektpartnern gemeinsam ausgesucht. Diese Gebiete sollen möglichst unterschiedliche klimatische/standörtliche Bedingungen, wie auch eine unterschiedliche Kalamitätsgeschichte, darstellen, damit möglichst viele Faktoren, bei der Auswertung der genetischen Strukturen der EPS-Populationen berücksichtigt werden können. Diese EPS-Populationen werden mittels molekulargenetischer Marker genetisch untersucht. Dabei werden zwei mitochondrialer Gene (COI und COII) sequenziert um Differenzen zwischen EPS-Individuen festzustellen. Weiterhin werden nukleare Mikrosatelliten Marker (SSRs) angewendet, um die genetische Variabilität innerhalb und die genetische Differenzierung zwischen Populationen zu erfassen. In diesem Schritt werden bekannte, erfolgreiche SSRs aus dem Pinien- auf den Eichenprozessionsspinner übertragen. Die am besten funktionierenden und variablesten SSRs werden für die Erfassung der genetischen Strukturen der EPS-Populationen verwendet. Sowohl die Sequenzierung der COI-Gene als auch die Fragmentanalyse der SSRs werden mittels Kapillarlektrophorese an einem DNA-Sequenzer durchgeführt. Die räumlichen genetischen Strukturen und die phylogenetische Bäume werden in Zusammenhang mit den standörtlichen/klimatischen/Kalamitätsgeschichtlichen Faktoren Auskunft über die Abstammung/Entstehung der Populationen geben. In der Gesamtauswertung im Verbundprojekt wird die genetische Diversität der EPS-Populationen mit der Vielfalt der Antagonistenvielfalt und die Befallsidensität korreliert werden.
Vier Fragestellungen stehen hierbei im Mittelpunkt: 1) Wie setzt sich die Vegetation im extrem trockenen Kernbereich der Atacama zusammen und welchen räumlichen und zeitlichen Schwankungen ist sie unterlegen? 2) Erfolgte die Besiedlung und Diversifizierung korreliert mit klimatischen und geologischen Ereignissen, welche als Ursache für die Aridität der Atacama zu sehen sind? 3) Sind diversifizierte Pflanzengruppen in der Atacama das Produkt einer einmaligen oder mehrmaligen Kolonisierung? 4) Spiegelt sich die Fragmentierung ausgewählter Arten in der Atacama in der genetischen Diversität wider oder wird diese positiv durch die Samenbank bzw. Ausbreitungsereignisse beeinflusst. Um diese Fragen zu beantworten, schlagen wir eine Kombination floristischer und molekularbiologischer Methoden vor: floristische Aufnahmen, ex-situ Kultivierung, molekulare Phylogenien ausgewählter und artenreicher Atacama Gruppen, sowie Populationsgenetik von Modelarten.
Origin | Count |
---|---|
Bund | 571 |
Kommune | 2 |
Land | 69 |
Wissenschaft | 14 |
Type | Count |
---|---|
Daten und Messstellen | 14 |
Ereignis | 4 |
Förderprogramm | 543 |
Lehrmaterial | 1 |
Taxon | 1 |
Text | 61 |
unbekannt | 22 |
License | Count |
---|---|
geschlossen | 70 |
offen | 570 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 544 |
Englisch | 183 |
Resource type | Count |
---|---|
Archiv | 10 |
Datei | 12 |
Dokument | 29 |
Keine | 384 |
Unbekannt | 7 |
Webdienst | 2 |
Webseite | 221 |
Topic | Count |
---|---|
Boden | 542 |
Lebewesen und Lebensräume | 645 |
Luft | 339 |
Mensch und Umwelt | 640 |
Wasser | 373 |
Weitere | 630 |