API src

Found 59 results.

Klimadaten und –produkte

Meteorologische Mess- und Beobachtungsdaten und daraus abgeleitete Datensätze für die Vergangenheit (vom Vortag oder älter) und für die Zukunft (Klimaprojektionen bis 2100). Die Klimadatensätze sind stationsbezogene, gebietsbezogene Daten oder Rasterdatenfelder für Deutschland. Klimadatensätze, die über Deutschland hinausgehen, werden hier ebenfalls bereitgestellt, wenn ihre entgeltfreie Bereitstellung geregelt ist (z.B. im Rahmen der WMO oder in Projektvereinbarungen der international beteiligten Partner). Die Datensätze stehen entgeltfrei unter https://opendata.dwd.de/climate zur Verfügung. Weitere Infos finden Sie auch auf dem Leistungssteckbrief unserer Internetseite https://www.dwd.de/DE/leistungen/opendata/opendata.html.

Sea Surface Topography and Mass Transport of the Antarctic Circumpolar Current (GEOTOP)

Das Projekt "Sea Surface Topography and Mass Transport of the Antarctic Circumpolar Current (GEOTOP)" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Astronomische und Physikalische Geodäsie durchgeführt. GeoTop3 is the third phase of a DFG project and belongs to the DFG priority progamme 1257 Mass Transport and Mass Distribution in the Earth System . It aims at the determination of the absolute, but temporally changing ocean circulation flow field and of associated mass and heat transports. It is based on a state-ofthe-art circulation model assimilating geodetic data of the dynamic ocean topography (DOT) and oceanographic in-situ data. The ocean model is focused on the Atlantic sector of the Antarctic Circumpolar Current (ACC) and the Weddell Sea. This is one of the most dynamic ocean areas and one of the most critical regions for global climate, due to the impact of circumpolar bottom water production on global deep sea circulation. The regional model is embedded into a coarser global model to avoid systematic distortions. The expected results of this project extension are: 1. A stationary DOT with highest achievable spatial resolution from GRACE and in particular GOCE geoid models and multi-mission altimeter data with error propagation for both, geoid and sea surface. 2. The geoid models will be combined with regional Antarctic gravity data for higher resolution. ICESat data will be used to deal with seasonal sea ice concentrations. 3. A time-variable DOT, sufficiently smoothed to reduce the signal-to-noise ratio and to match the spectral and spatial resolution characteristics of the numerical model. 4. A calculation of the sensitivity of major ocean features such as strength of the Weddell Gyre on the accuracy and resolution of the geoid (and dynamical height) determination in view of the high resolution GOCE geoid model and improved geoid estimates in Weddell Sea area. 5. Model runs, in particular for the mass and heat transport in the Antarctic Circumpolar Current and the Weddell Gyre, the mean oceanographic DOT and its variability as well as their interpretation and quality assessment.

Ground-based remote sensing measurements of CO2 and CH4 using the moon as light source during the polar night

Das Projekt "Ground-based remote sensing measurements of CO2 and CH4 using the moon as light source during the polar night" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik durchgeführt. Throughout the last years measurement techniques have been developed to measure total columns of atmospheric CO2 and CH4 with sufficient precision using the ground-based solar absorption remote sensing spectrometry in the near-infrared spectral region. These observations are internationally organized in the Total Column Carbon Observing Network (TCCON). These observations have been initiated for the satellite validation, because they sample the atmosphere in a similar way as satellites. However, the measurements itself have been found extremely valuable to investigate the sources and sinks of the trace gases, because the interpretation of the ground-based total column data depend to a less extent on assumptions on the vertical mixing in the atmosphere compared to surface in-situ data. We perform such observations at our site in the high Arctic on Spitsbergen (79°N). However, during the polar night from October until mid-March no observations can be performed, because the sun is below the horizon. Since the seasonal cycle of CO2 is largest in the high northern latitudes the lack of total column data for the winter period limits our understanding of the carbon budget. Within this project we plan to modify the measurement and analysis technique to measure the total columns of CO2 and CH4 in the near-infrared using the moon as light source during the polar night. This will allow us to perform observations on +-3 days around full moon, and thus, obtain data throughout the polar night for about three full moon periods. This allows measuring the complete seasonal cycle of total column measurements of CO2 and CH4 in the high Arctic, which is not known so far. Finally, the whole set of data will be compared to the existing in-situ surface data at that site and both data sets, in-situ and total column, will be compared with appropriate models.

E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries

Das Projekt "E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik, Fachgebiet Agrartechnik in den Tropen und Subtropen durchgeführt. Fruit tree cultivation is a suitable option for erosion control in mountainous regions of Southeast Asia. However, seasonal overproduction and insufficient access to markets can cause economic losses. The possibility of processing fruits locally could contribute considerably to increase and stabilize farm income. Currently, fruit drying methods in these areas are yielding products of inferior quality. Pre-treatments such as sulphurizing are commonly used, but can make the product undesirable for international markets. In addition, high energy requirements increase production costs significantly. Therefore, the objective of subproject E1.2 is to optimize the drying process of small-scale fruit processing industries in terms of dryer capacity, energy consumption and efficiency and end product quality. During SFB-phase II in E1.1, drying fundamentals for the key fruits mango, litchi and longan were established. In laboratory experiments, impacts of drying parameters on quality were investigated and numerical single-layer models for simulation of drying kinetics have been designed. In SFB-phase III this knowledge will be expanded with the aim of optimizing practical drying processes. Therefore, the single-layer models will be extended to multi-layer models for simulating bulk-drying conditions. The Finite Element Method (FEM) will be adapted to calculate heat and mass transfer processes. Thermodynamic behavior of batch and tray dryers will be simulated using Computational Fluid Dynamics (CFD) software. Drying facilities will be optimized by systematic parameter variation. For reduction of energy costs, the potential of solar energy and biomass will be investigated in particular. Further research approaches are resulting from cooperation with other subprojects. A mechanic-enzymatic peeling method will be jointly used with E2.3 for studying the drying behavior of peeled litchi and longan fruits. Furthermore, a fruit maturity sensor based on Acoustic Resonance Spectroscopy (ARS) will be developed in cooperation with E2.3 and B3.2. Finally, an internet platform will be built for exchange of farmer-processor information about harvest time and quantities to increase utilization of the processing facilities.

The effect of potassium and calcium on wood formation and xylem/phloem physology

Das Projekt "The effect of potassium and calcium on wood formation and xylem/phloem physology" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft, Ordinariat für Holzbiologie und Institut für Holztechnologie und Holzbiologie des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. Ions play a fundamental role in the physiology of cambial growth. To gain better knowledge about the role of K, Ca and P in wood formation, we intend to focus on plants grown under different K, Ca and P supply as well as on transgenic plants with modified ion transporter expression produced by P5 and/or P3. Two approaches will be applied on all differently treated plants in this project. First, structural and ultrastructural analysis of stem tissues (phloem, cambium, xylem) will be carried out throughout all seasons by image analysis and high resolution TEM. In order to correlate structural changes to biochemical variations, a second approach deals with the following analysis in all tissues: Seasonal changes of K, Ca and P will be measured by EDXA, whereas K and Ca will also be determined quantitatively by atomic absorption spectrometry. By generating antibodies against different potassium transporters we further will show their distribution in poplar stem tissues throughout all seasons by fluorescence and transmission electron microscopy. In order to correlate changes in ion content to sugar concentrations, seasonal variations of different sugars as well as starch will be determined enzymatically. To measure changes in the chemical composition of cell walls, FTIR-spectroscopy will be used to quantitatively detect a range of functional groups in the cell wall.

C 1.2: Analysis and manipulation of the agro-biocoenosis for sustainable management of litchi growing systems at hillsides of Northern Thailand

Das Projekt "C 1.2: Analysis and manipulation of the agro-biocoenosis for sustainable management of litchi growing systems at hillsides of Northern Thailand" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Pflanzenproduktion und Agrarökologie in den Tropen und Subtropen durchgeführt. In the hillsides of northern Thailand, the importance of fruit trees (mainly litchi) is increasing. However, fruit production is limited by a number of biotic and abiotic factors. Frequent applications of herbicides and insecticides result in a grass-dominated herbicide flora of low diversity. Further consequences are low numbers of beneficials, soil erosion and the decline of soil fertility. The aim of the proposed project is the development of a litchi production system with reduced insecticide and herbicide input, which allows both sustainable and profitable land use. This will be achieved by (a) the development of management strategies for preventive measures in pest population control and (b) the establishment of a smother vegetation which leads to an increased diversity of the system, enhancement of beneficials, improved soil conservation and fertility, and which has an additional-use potential (e.g., forage). The experimental approach for studying the effects of management measures (handling of the attendant vegetation and insecticide application in four different treatments) on plant species diversity and the beneficial fauna will be continued from phase 1 in an extended manner. In addition, the long-term monitoring of seasonal changes in abundance of the six major litchi pests, identified in the first phase, will be continued. The migration patterns of these species will also be studied since some of them migrate between the litchi plantations and the surrounding habitats. The parasitoids and predators of these pests will be identified and their abundances recorded. Participatory activities will continue in cooperation with subproject A1.2. They include regular meetings with individual farmers and group interviews for information exchange about pest problems and farmers strategies to cope with these problems. In the first phase, four promising cover legume species with potential for soil enhancement and livestock feeding have been identified. In order to increase biodiversity in fruit orchards, the effects of different mixtures of these species will be studied. At Mae Sa Mai, experiments will show if and how such mixtures, by complementary and compensatory effects, contribute to increased productivity and quality of the understorey vegetation. In addition, changes of soil chemical, physical and biological properties will be monitored. Soil scientist expert advice as well as related data flow is ensured by close cooperation with subprojects B1.2, B2.2 and B3.1. Participatory Monitoring and Evaluation (PM&E) will be carried out jointly with A1.2. In the view of the greater role of livestock in the region of the SFB's second research site (Phang Ma Pha), a parallel replication of the legume mixture research is intended for that site in the form of a complementary NRCT project, also including the pest component of the project.

Observations and Modelling of the 14CO2 Variability in the Polar Atmosphere of the Southern Hemisphere

Das Projekt "Observations and Modelling of the 14CO2 Variability in the Polar Atmosphere of the Southern Hemisphere" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. The project focuses on the measurement and interpretation of atmospheric 14C variations in high latitudes of the southern hemisphere. We will investigate the global trend in the interhemispheric 14C gradient which is naturally caused by the large 14CO2 uptake in the Southern Ocean due to vigorous gas exchange and a strong 14C disequilibrium between the atmosphere and aged surface water around Antarctica. Anthropogenic emissions of fossil fuel, 14C-free CO2 in the northern hemisphere counteract the natural gradient. Seasonal variations in the CO2 gas exchange rate between atmosphere and ocean surface lead to seasonally varying 14CO2 fluxes, which contribute to the seasonality of the observed 14C signal in the southern polar troposphere. This ocean signal is superimposed by the seasonal injection of stratospheric air (= source of natural, cosmogenic 14C). Both components can, in principle, be decoupled by 10Be/7Be observations and respective model simulations. With an existing box model of the atmosphere for 14CO2 to which an ocean model will be coupled in the frame of this project, we will simulate and quantify the oceanic and stratospheric contributions to the observed 14C variability. This will allow new constraints on the respective processes, i.e. gas exchange between stratosphere, troposphere and ocean. Furthermore, the observed inter-annual 14C variability, its relation to ENSO and the associated variable stratification of the oceans in the southern hemisphere will by studied.

Seasonal regulation of ion- and metabolite transport between poplar shoot tissues

Das Projekt "Seasonal regulation of ion- and metabolite transport between poplar shoot tissues" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften mit Botanischem Garten, Lehrstuhl für Botanik I Molekulare Pflanzenphysiologie und Biophysik durchgeführt. We intend to investigate the molecular mechanisms of mineral nutrient dependent poplar physiology with special focus on potassium. This will be accomplished using two different approaches. 1. Molecular biology: We will study the regulation of ion channels and transporters by different environmental conditions, such as the effect of nutrition, salt, hormonal action, cold and drought during wood production and the dormancy-growth transitions. Phenotype analysis of transporter sense/antisense plants will be used to gain insights into the role of the transporters in tree physiology. On the basis of a laser-micro-dissection system, we will be able to prepare cDNA of distinct cell types and generate subtractive cDNAs to determine genes, specific for the differentiation of vessels and bast fibers. 2. Electrophysiological investigations: We will compare the functional properties of the transporters. Ion-fluxes and transporters, involved in cambial activation will be characterized in vivo and in vitro. The response to changes in e.g. the extracellular medium in vitro, will provide a measure for the regulation of ion transport by apoplastic factors in vivo. Based on this data sets we should be able to establish a model on the seasonal fluxes of potassium in relation to the transporter properties and dynamics in the context of tree physiology in general and xylogenesis in particular.

cCASHh - Climate Change and Adaptation Strategies for Human health in Europe

Das Projekt "cCASHh - Climate Change and Adaptation Strategies for Human health in Europe" wird vom Umweltbundesamt gefördert und von Deutscher Wetterdienst durchgeführt. Die Gesundheit der Bevölkerung in Europa wird in den kommenden Jahrzehnten durch den globalen Klimawandel betroffen sein. Anpassungsstrategie können die potenziellen Gesundheitsfolgen des Klimawandels minimieren und dazu beitragen, die negativen Effekte auf die Gesundheit kosteneffektiv zu reduzieren. Das Projekt wird Folgenabschätzungen und Anpassungsmöglichkeiten für folgende vier klimaabhängige Bereiche der menschlichen Gesundheit betrachten: 1. Gesundheitseffekte von Hitze und Kälte, 2. Gesundheitseffekte von extremen Wetterereignissen, 3. Infektionskrankheiten, die durch Insekten und Zecken übertragen werden und 4. Infektionskrankheiten, die durch Wasser oder durch Nahrung übertragen werden. Ziele: Ziele des Projekts sind 1. die Identifikation der Vulnerabilität der menschliche Gesundheit hinsichtlich der negativen Folgen des Klimawandels, 2. die Prüfung der gegenwärtigen Maßnahmen, Techniken, Politiken und Grenzen zur Verbesserung der Anpassungskapazität an den Klimawandel, 3. die Identifikation von angemessenen und effektiven Maßnahmen, Techniken und Politiken zur erfolgreichen Anpassung an den Klimawandel für die Bevölkerung in Europa, 4. die Abschätzung der Vorteile von spezifischen Strategien oder Strategiekombinationen für die Anpassung von vulnerablen Bevölkerungsgruppen unter Berücksichtigung verschiedener Klimawandelszenarien und 5. die Abschätzung der Kosten und des Nutzens klimawandelbedingter Folgen und Anpassungsmaßnahmen einschließlich des vom Klimawandel unabhängigen Zusatznutzens. KLIMASZENARIO Grundlage sind die Emissionsszenarien und Klimaprojektionen des 3. Sachstandberichts des IPCC von 2001. Parameter: Temperaturzunahme, Hitzewellen, Überflutungsereignisse räumlicher Bezug: Europa Zeithorizont: 2100 KLIMAFOLGEN Die Bevölkerung ist insbesondere gegenüber vier Typen von Wetter- und Klimabedingungen exponiert: 1. Langfristige Änderungen der mittleren Temperatur und anderer Klimamittelwerte im Klimawandel, für die eine Betrachtung über Jahrzehnte oder länger erforderlich ist; 2. Interannuelle Klimavariabilität; 3. Kurzfristige Variabilität, zu der monatliche, wöchentliche oder tägliche meteorologische Veränderungen gehören; 4. Einzelne Extremereignisse wie z.B. Temperatur- oder Niederschlagsextreme oder komplexe Überflutungsereignisse. Sektoren und Handlungsfelder: Gesundheit, Kommunikation ANPASSUNGSMASSNAHMEN Hintergrund und Ziele: Anpassung kann auf vielen Ebenen stattfinden. Das Projekt wird v.a. rechtliche, politische und institutionelle Maßnahmen identifizieren, die für die Erhaltung und Verbesserung des Gesundheitsstatus der Bevölkerung benötigt werden und der Anpassung an zukünftige Klimafolgen dienen. Solche Maßnahmen werden auf individueller und privater Ebene ebenso gebraucht, wie auf nationaler und internationaler Ebene. usw.

The predictability of atmospheric blocking in global ensemble prediction systems

Das Projekt "The predictability of atmospheric blocking in global ensemble prediction systems" wird vom Umweltbundesamt gefördert und von Deutscher Wetterdienst durchgeführt. Blocking is an atmospheric phenomenon which has major implications for local weather. It can lead to extremely high or low temperatures due to the long lasting almost stationary high pressure system. Furthermore, a block can exert a strong impact on upstream, in-situ and downstream synoptic weather patterns by disrupting the multitude westerly flow. Thereby, blocking can be the cause for severe precipitation anomalies in cut-off lows surrounding the high pressure system. The state of the art ensemble prediction systems (EPSs) which are part of the THORPEX Interactive Grand Global Ensemble (TIGGE) perform well in predicting the frequencies of Atlantic European and Pacific blocking but have difficulties in predicting the onset and the decay of blocking. The predictability of the onset is about 1 day worse than the predictability if the blocking is already specified in the initial conditions. Furthermore, the TIGGE ensemble prediction systems (EPSs) have problems in simulating the frequencies of Greenland and Ural blocking. This study is dedicated to investigate the dynamics of selected blocking events in the medium range, the monthly, and the seasonal ECMWF EPS. Two different clustering methods based on EOF/PC 3 analysis and one method based on ensemble analysis covariance will be applied to the EPSs. Links between different types of block formation or decay and large scale events like breaking Ross by waves or small scale diabetic processes like precipitation resulting from the advection of moist air masses will be investigated. Their roles in the life cycle of a blocking event will be compared. The same investigation methods will be applied to the TIGGE ensembles and to carry forward the results obtained for the medium range ECMWF EPS alone. Additionally, for two winter seasons and for a whole year scores and skill scores used at the ECMWF will be calculated and the predictive skill of the EPSs will be assessed with regard to blockings.

1 2 3 4 5 6