Wasserbasierte Formulierungen zeigen eine Anfälligkeit für mikrobielle Verkeimung, die aktuell nur über den Einsatz geeigneter Biozide unterbunden werden kann. Bedingt durch die gesetzliche Limitierung der Methylisothiazolinon-Einsatzmenge (MIT) auf maximal 15 ppm für die Begrenzung des bakteriellen Wachstums, steht kein weiteres biozides Mittel mit einem solchen Wirkspektrum zur Verfügung. Alternative Ansätze wie ein hoher pH-Wert, z.B.bei Silikatfarben, können bei Hydro-Lacken und wässrigen Beizen nicht verfolgt werden. Dieses Defizit soll zur Vervollständigung einer ökologischeren, wasserbasierten Strategie für Lacke und Beizen durch den Einsatz geeigneter natürlicher Substanzen wie ätherischen Ölen und anderen Pflanzenextrakten ausgeglichen werden. Diese aus biogenen Rohstoffen isolierten biobasierten Feinchemikalien besitzen oft ein nachgewiesenermaßen breites Wirkspektrum. Besondere Herausforderungen beim Einsatz ätherischer Öle ergeben sich jedoch aus ihrem oftmals intensiven Geruch, der schlechten Wasserlöslichkeit und ihrer hohen Flüchtigkeit. Kompensiert werden sollen diese Nachteile durch die Mikroverkapselung dieser Biorohstoffe mit Hilfe der ebenfalls biobasierten Cyclodextrine. Damit wird gleichzeitig die Abhängigkeit von erdölbasierten Bioziden als Beitrag zur Ressourcenschonung reduziert.
Subterrane Ökosysteme beherbergen eine breite Vielfalt spezialisierter und endemischer Organismen, die einen einzigartigen Bruchteil der globalen Vielfalt ausmachen. Darüber hinaus leisten sie entscheidende Beiträge der Natur für die Menschen – insbesondere die Bereitstellung von Trinkwasser für mehr als die Hälfte der Weltbevölkerung. Diese unsichtbaren Ökosysteme werden jedoch bei den Biodiversitäts- und Klimaschutzzielen für die Zeit nach 2020 übersehen. Nur 6,9 % der bekannten subterranen Ökosysteme überschneiden sich mit dem ´Netzwerk von Schutzgebieten. Zwei Haupthindernisse sind für diesen Mangel an Schutz verantwortlich. Erstens bleiben subterrane Biodiversitätsmuster weitgehend unkartiert. Zweitens fehlt uns ein mechanistisches Verständnis der Reaktion subterraner Arten auf vom Menschen verursachte Störungen. Das DarCo-Projekt zielt darauf ab, subterrane Biodiversität in ganz Europa zu kartieren und einen expliziten Plan zur Einbeziehung subterraner Ökosysteme in die Biodiversitätsstrategie der Europäischen Union (EU) für 2030 zu entwickeln. Zu diesem Zweck haben wir ein multidisziplinäres Team führender Wissenschaftler in subterraner Biologie und Makroökologie zusammengestellt und Naturschutz aus einem breiten Spektrum europäischer Länder. Das Projekt gliedert sich in drei Arbeitspakete, die der direkten Forschung gewidmet sind (WP2-4), plus ein viertes (WP5), das darauf abzielt, die Verbreitung der Ergebnisse und das Engagement der Interessengruppen für die praktische Umsetzung des Naturschutzes zu maximieren. Zunächst werden wir durch die Zusammenstellung bestehender Datenbanken und die Nutzung eines kapillaren Netzwerks internationaler Mitarbeiter Verbreitungsdaten, Merkmale und Phylogenien für alle wichtigen subterranen Tiergruppen sammeln, einschließlich Krebstiere, Mollusken, Insekten und Wirbeltiere (WP2). Diese Daten werden dazu dienen, die Reaktionen von Arten auf menschliche Bedrohungen mithilfe der hierarchischen Modellierung von Artengemeinschaften (WP3) vorherzusagen. Die Vorhersagen der Modelle zur Veränderung der biologischen Vielfalt werden die Grundlage für eine erste dynamische Kartierung des subterranen Lebens in Europa bilden. Durch die Verschneidung von Karten von Diversitätsmustern, Bedrohungen und Schutzgebieten werden wir einen Plan zum Schutz der subterranen Biodiversität entwerfen, der das aktuelle EU-Netzwerk von Schutzgebieten (Natura 2000) ergänzt und gleichzeitig klimabedingte Veränderungen in subterranen Ökoregionen berücksichtigt (WP4). Schließlich versuchen wir durch gezielte Aktivitäten in WP5, das gesellschaftliche Bewusstsein für subterrane Ökosysteme zu schärfen und Interessengruppen einzuladen, die subterrane Biodiversität in multilaterale Vereinbarungen einzubeziehen. In Übereinstimmung mit dem europäischen Plan S werden wir alle Daten offen und wiederverwendbar machen, indem wir eine zentralisierte und offene Datenbank zum subterranen Leben entwickeln – die Subterranean Biodiversity Platform.
Apfel (Malus domestica) ist einer der wichtigsten angebauten Früchte weltweit. In Baumschulen werden Pflanzen häufig neu gepflanzt (2-3 Jahre), was zu einer verminderten Ernteproduktivität führt, die auch als Apfelnachbaukrankheit (ARD) bezeichnet wird. ARD kann definiert werden als "eine schädlich, gestörte physiologische und morphologische Reaktion von Apfelpflanzen auf Böden, die aufgrund früherer Apfelkulturen Veränderungen in ihrem (Mikro-) Biom ausgesetzt waren". Früher wurden Bodenbegasungsmittel zur Bekämpfung von ARD verwendet. Bei diesen Mitteln sind Anwendungsschwierigkeiten, hohe Kosten und Gefahren für die Umwelt und die menschliche Gesundheit als problematisch anzusehen. Daher wäre die Züchtung und/oder Selektion weniger empfindlicher Genotypen eine nachhaltigere Lösung für ARD. Die Entwicklung von ARD-assoziierten Markern beruht jedoch auf einem besseren Verständnis der molekularen Reaktionen in planta, um die Ätiologie der Krankheit zu entschlüsseln. Kürzlich wurde gezeigt, dass Phytoalexinbiosynthesegene nach sieben Tagen Kultur auf ARD-Boden im Vergleich zu desinfiziertem ARD-Boden stark hochreguliert sind. Es zeigte sich, dass sich die Phytoalexine im Wurzelsystem in sehr hohen Konzentrationen anhäufen, was zu einer möglichen Phytotoxizität führt. ABC-Transporter, die an der Translokation und Exsudation von Phytoalexinen beteiligt sind, zeigten keine Regulation, was zu der Annahme führte, dass Phytoalexine unter ARD-Bedingungen nicht in den Boden ausgeschieden werden und sich daher in sehr hohen Konzentrationen in den Wurzeln anreichern. Zusätzlich kann der vakuoläre Transport behindert werden, was zu einer fehlenden Entgiftung der akkumulierten Substanzen führt. Ein möglicher Grund für die möglicherweise eingeschränkte Exsudation von Phytoalexinen oder von Sequestrierung in Vakuolen über ABC-Transporter könnte die Entstehung toxischer Zyanidkonzentrationen in ARD-betroffenen Pflanzen sein, was zu weniger ATP-Verfügbarkeit für ABC-Transporter führt. Ziel des Projektes ist es, die Rolle von ARD-induzierten Phytoalexinen bei ARD und molekulare Reaktionen in ARD-betroffenen Pflanzen aufzuklären. Der Fokus wird darauf liegen, ihre Rolle bei ARD unter Berücksichtigung weiterer interagierender Gene/Proteine abzuleiten. Die Toxizität und Lokalisation der Verbindungen werden ebenso analysiert wie Entgiftungsmechanismen, z.B. Transport aus dem Zytoplasma. Darüber hinaus werden weitere toxische Nebenprodukte im Cyanidstoffwechsel sowie die Energieversorgung näher untersucht, um einen detaillierten Überblick über die molekularen Mechanismen bei ARD zu erhalten. Fluoreszenz-in-situ-Hybridisierung, Mikroskopie, Genexpressionsstudien und metabolische Analysen werden eingesetzt, um dieses Ziel zu erreichen. Vergleiche zwischen einem sensitiven und einem weniger sensitiven Genotyp sollen Erkenntnisse für die frühe Vorhersage von ARD-Schweregraden in Böden liefern und dabei helfen ARD-tolerante Apfelpflanzen auszuwählen.
Zunehmende Landnutzungsintensität (LUI) verursacht umweltrelevante Stickstoff (N)-Verluste und den Rückgang von Artenvielfalt und Multifunktionalität in Grünlandökosystemen. Gezielte Minderungsstrategien werden jedoch durch ein mangelhaftes mechanistisches Verständnis der Wechselwirkungen zwischen LUI, ober- und unterirdischer Biodiversität und dem N-Kreislauf verhindert. BE_BioMON will über die interdisziplinäre Integration von molekularbiologischer Bodenökologie, biogeochemischer Prozessforschung zur kurzfristigen N-Allokation im System Pflanze-Boden-Mikroorganismen und physikochemischer Prozessforschung zur langfristigen Retention von organischem Stickstoff (SON) diese Wissenslücke schließen. Dabei werden Messungen und Modellierungen verknüpft. Wir erwarten, dass sich mit abnehmendem LUI und einem artenreicheren Mikrobiom die N-Verteilung von Nitrifikation/Denitrifikation zu biotischer Assimilation verschiebt. Dies fördert die N-Retention durch Nekromassestabilisierung in partikulärem und mineralassoziiertem SON in Abhängigkeit von Aggregatumsatz und mikroskaliger Bodenarchitektur. Wir nehmen zudem an, dass eine Erhöhung der LUI zu einer Verschiebung von symbiotischer zu assoziativer N-Fixierung führt, was das N2:N2O-Emissionsverhältnis aufgrund verkürzter Denitrifikation bei symbiotischen N-Fixierern erhöhen wird. Darüber hinaus erwarten wir, dass d15N im Boden einen Fingerabdruck der Auswirkungen der LUI auf den N-Kreislauf liefert und somit als prozessintegrierende Bezugsgröße für Ökosystemmodelle dienen kann. Wir erwarten uns hiervon eine verbesserte räumlich-zeitliche Skalierung von LUI-Effekten auf den N-Kreislauf. Um die Hypothesen zu testen, werden wir 15N-Dünger-Tracing-Experimente auf ausgewählten Parzellen unterschiedlicher LUI in allen 3 Biodiversitätsexploratorien (BE) durchführen (WP1). In WP2 werden Mesokosmen-Experimente unter 15N2-Exposition durchgeführt, um die Auswirkungen von LUI auf Umsetzung von BNF-N zu untersuchen. WP3 zielt darauf, den N-Kreislauf im Rahmen der BE-Bodenbeprobungskampagne auf allen Grünland-EPs durch vertikale d15N-Bodenprofile, Metagenomik und SON-Fraktionierung zu bestimmen. Die gewonnenen Erkenntnisse aus WP1-3 und aus bereits verfügbaren BExIS-Daten werden zum Testen und Weiterentwickeln der N-Routinen des prozessbasierten Ökosystemmodells LandscapeDNDC verwendet. Dieses Modell, erweitert um ein dynamisches Vegetationsmodell CoSMo, wird dann verwendet, um den N-Kreislauf für die sämtliche BE-Grünlandparzellen zu simulieren (WP4). In WP5 (Synthese) werden wir LUI und Biodiversität, gemessene und modellierte biogeochemischen N-Umsetzungen, N-Retention durch organo-mineralische Interaktionen und vollständige N-Bilanzen auf Skalen von Tagen bis Jahren mechanistisch verknüpfen. Wir erwarten somit, dass diese Synthese ein mechanistisches und funktionales Verständnis des N-Kreislaufs unter dem Einfluss von LUI, ober- und unterirdischer Biodiversität sowie standortspezifischen Eigenschaften ermöglicht.
Gewässerrenaturierungsprojekte zielten bisher hauptsächlich darauf ab, natürliche lokale Habitatbedingungen wiederherzustellen und dadurch die Biodiversität zu erhöhen. Dieser habitatbasierte Ansatz auf lokaler Ebene vernachlässigt den starken Einfluss von großräumigen Umweltfaktoren. Außerdem sind die gesellschaftlichen Bedürfnisse und der Nutzen von Renaturierungen bislang kaum untersucht und ihre Beziehung zum lokalen und regionalen Umweltkontext unklar. In letzter Zeit wurden Konzepte zu den relevanten räumlichen Skalen für die Gewässerrenaturierung entwickelt, diese wurden aber noch nicht an großen Datensätzen getestet. Das COSAR-Projekt untersucht den Einfluss des gegenwärtigen und historischen räumlichen Kontextes von Renaturierungsprojekten auf die ökologischen und gesellschaftlichen Renaturierungsergebnisse. Die Projektpartner kombinieren ihre vorhandenen ökologischen Monitoringdaten von 200 Restaurierungsprojekten aus Mittel- und Nordeuropa. Zusätzlich werden Social-Media-Posts von renaturierten Standorten analysiert, um Rückschlüsse auf Ökosystemleistungen und die Interaktion der Menschen mit renaturierten Standorten zu ziehen. Das Projekt besteht aus drei Arbeitsschritten. Erstens definieren und quantifizieren wir ökologische und gesellschaftliche Indikatoren für den Erfolg von Renaturierungen und untersuchen ihre Synergien und Zielkonflikte. Zweitens kontextualisieren wir die ökologischen und gesellschaftlichen Restaurierungsergebnisse mit biotischen und abiotischen Umwelt- und sozioökonomischen Daten auf verschiedenen räumlichen Skalen, um die relevanten Treiber und Skalen zu identifizieren, die den Renaturierungserfolg fördern oder verhindern. In diesen Analysen berücksichtigen wir auch historische Umweltbedingungen. Drittens entwickeln und verbreiten wir ein interaktives Online-Werkzeug, das während der Restaurierungsplanung genutzt werden kann, um das in den ersten beiden Stufen gewonnene Wissen auf eigene Restaurierungsszenarien anzuwenden. Zusätzlich stellen wir Faktenblätter zur Verfügung und zeigen Best-Practice-Beispiele für die Renaturierungsplanung auf. Wir wenden einen transdisziplinären Ansatz an und legen großen Wert auf die Einbindung von Stakeholdern in allen Projektphasen. Diese Stakeholder vertreten verschiedene Interessengruppen aus allen am Projekt beteiligten Nationalitäten. Sie helfen bei der Identifizierung der relevanten Erfolgsindikatoren, gestalten den Fokus der Kontextanalysen, geben Ratschläge, um die Relevanz und Benutzerfreundlichkeit der Projektergebnisse sicherzustellen und fungieren als Botschafter bei der Verbreitung der Projektergebnisse. Mit diesem Projektdesign stellen wir neues Wissen und Werkzeuge zur Verfügung, um den ökologischen und gesellschaftlichen Nutzen von Renaturierungsprojekten zu fördern, die Planung vielversprechender Renaturierungsprojekte zu erleichtern um die Ziele der Wasserrahmenrichtlinie und die Sustainable Development Goals 3, 6, 14 &15 zu erreichen.
Der interoperable INSPIRE-Datensatz beinhaltet Daten der EU-Zahlstelle BB über die landwirtschaftlichen Flächen in Brandenburg, transformiert in das INSPIRE-Zielschema Bodennutzung. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the agricultural areas in the State of Brandenburg from the paying agency, transformed into the INSPIRE annex schema Land Use. The data set is provided via compliant view and download services. Der interoperable INSPIRE-Datensatz beinhaltet Daten der EU-Zahlstelle BB über die landwirtschaftlichen Flächen in Brandenburg, transformiert in das INSPIRE-Zielschema Bodennutzung. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the agricultural areas in the State of Brandenburg from the paying agency, transformed into the INSPIRE annex schema Land Use. The data set is provided via compliant view and download services.
Der interoperable INSPIRE-Datensatz beinhaltet Daten der EU-Zahlstelle BB über die Landschaftselemente in Brandenburg, transformiert in das INSPIRE-Zielschema Bodenbedeckung. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the landscape features in the State of Brandenburg from the paying agency, transformed into the INSPIRE annex schema Land Cover. The data set is provided via compliant view and download services. Der interoperable INSPIRE-Datensatz beinhaltet Daten der EU-Zahlstelle BB über die Landschaftselemente in Brandenburg, transformiert in das INSPIRE-Zielschema Bodenbedeckung. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the landscape features in the State of Brandenburg from the paying agency, transformed into the INSPIRE annex schema Land Cover. The data set is provided via compliant view and download services.
Der interoperable INSPIRE-Datensatz beinhaltet Daten der EU-Zahlstelle BB über die landwirtschaftlichen Parzellen in Brandenburg, transformiert in das INSPIRE-Zielschema Bodennutzung. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the agricultural parcels in the State of Brandenburg from the paying agency, transformed into the INSPIRE annex schema Land Use. The data set is provided via compliant view and download services. Der interoperable INSPIRE-Datensatz beinhaltet Daten der EU-Zahlstelle BB über die landwirtschaftlichen Parzellen in Brandenburg, transformiert in das INSPIRE-Zielschema Bodennutzung. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the agricultural parcels in the State of Brandenburg from the paying agency, transformed into the INSPIRE annex schema Land Use. The data set is provided via compliant view and download services.
Der interoperable INSPIRE-WMS ist ein Darstellungsdienst, der Daten im Annex-Schema Existierende Bodennutzung (abgeleitet aus dem originären Datensatz: Digitales Feldblock Kataster Brandenburg) bereitstellt. Gemäß der INSPIRE-Datenspezifikation Land Use (D2.8.III.4_v3.1.1) liegen die Inhalte INSPIRE-konform vor. Der WMS beinhaltet den folgenden Layer: • LU.ExistingLandUse: Ein Objekt zur existierenden Bodennutzung beschreibt die Bodennutzung in einem Gebiet miteinheitlicher Bodennutzungskategorie oder homogener Kombination verschiedener Bodennutzungen. --- The compliant INSPIRE-WFS is a view service that delivers data in the Annex-Schema Existing Land Use (derived from the original data set: Land Parcel Information System LPIS). The content is compliant to the INSPIRE data specification for the annex theme Land Use (D2.8.III.4_v3.1.1). The WMS includes the following layer: • LU.ExistingLandUse: An existing land use object describes the land use of an area having a homogeneous combination of land use types. Maßstab: 1:2400; Bodenauflösung: nullm; Scanauflösung (DPI): null
| Origin | Count |
|---|---|
| Bund | 1108 |
| Kommune | 17 |
| Land | 660 |
| Wirtschaft | 1 |
| Wissenschaft | 8 |
| Zivilgesellschaft | 13 |
| Type | Count |
|---|---|
| Chemische Verbindung | 11 |
| Daten und Messstellen | 481 |
| Ereignis | 7 |
| Förderprogramm | 936 |
| Gesetzestext | 6 |
| Software | 1 |
| Taxon | 2 |
| Text | 198 |
| Umweltprüfung | 14 |
| WRRL-Maßnahme | 1 |
| unbekannt | 102 |
| License | Count |
|---|---|
| geschlossen | 270 |
| offen | 1469 |
| unbekannt | 15 |
| Language | Count |
|---|---|
| Deutsch | 1656 |
| Englisch | 211 |
| andere | 2 |
| Resource type | Count |
|---|---|
| Archiv | 481 |
| Bild | 8 |
| Datei | 35 |
| Dokument | 125 |
| Keine | 733 |
| Multimedia | 2 |
| Unbekannt | 4 |
| Webdienst | 17 |
| Webseite | 902 |
| Topic | Count |
|---|---|
| Boden | 1305 |
| Lebewesen und Lebensräume | 1343 |
| Luft | 1194 |
| Mensch und Umwelt | 1749 |
| Wasser | 1162 |
| Weitere | 1669 |