API src

Found 1804 results.

Similar terms

s/lacs/Lack/gi

INSPIRE-WMS Land Use / InVeKoS Landwirtschaftliche Flächen BB

Der interoperable INSPIRE-WMS ist ein Darstellungsdienst, der Daten im Annex-Schema Existierende Bodennutzung (abgeleitet aus dem originären Datensatz: Digitales Feldblock Kataster Brandenburg) bereitstellt. Gemäß der INSPIRE-Datenspezifikation Land Use (D2.8.III.4_v3.1.1) liegen die Inhalte INSPIRE-konform vor. Der WMS beinhaltet den folgenden Layer: • LU.ExistingLandUse: Ein Objekt zur existierenden Bodennutzung beschreibt die Bodennutzung in einem Gebiet miteinheitlicher Bodennutzungskategorie oder homogener Kombination verschiedener Bodennutzungen. --- The compliant INSPIRE-WFS is a view service that delivers data in the Annex-Schema Existing Land Use (derived from the original data set: Land Parcel Information System LPIS). The content is compliant to the INSPIRE data specification for the annex theme Land Use (D2.8.III.4_v3.1.1). The WMS includes the following layer: • LU.ExistingLandUse: An existing land use object describes the land use of an area having a homogeneous combination of land use types. Maßstab: 1:2400; Bodenauflösung: nullm; Scanauflösung (DPI): null

INSPIRE-WMS Land Cover / InVeKoS Landschaftselemente BB

Der interoperable INSPIRE-WMS ist ein Darstellungsdienst, der Daten im Annex-Schema Bodenbedeckungsvektor (abgeleitet aus dem originären Datensatz: Digitales Feldblock Kataster) bereitstellt. Gemäß der INSPIRE-Datenspezifikation Land Cover (D2.8.II.2_v3.1.0) liegen die Inhalte INSPIRE-konform vor. Der WMS beinhaltet den folgenden Layer: • LC.LandCoverSurfaces: Ein einzelnes, durch einen Punkt oder eine Fläche dargestelltes Element des Bodenbedeckungsdatensatzes. --- The compliant INSPIRE-WFS is a view service that delivers data in the Annex-Schema Land Cover Vector (derived from the original data set: Land Parcel Information System LPIS). The content is compliant to the INSPIRE data specification for the annex theme Land Cover (D2.8.II.2_v3.1.0). The WMS includes the following layer: • LC.LandCoverSurfaces: An individual element of the LC dataset represented by a point or polygon. Maßstab: 1:2400; Bodenauflösung: nullm; Scanauflösung (DPI): null

INSPIRE-WMS Land Use / InVeKoS Landwirtschaftliche Parzellen BB

Der interoperable INSPIRE-WMS ist ein Darstellungsdienst, der Daten im Annex-Schema Existierende Bodennutzung (abgeleitet aus dem originären Datensatz: Daten aus dem Agrarförderantrag) bereitstellt. Gemäß der INSPIRE-Datenspezifikation Land Use (D2.8.III.4_v3.1.1) liegen die Inhalte INSPIRE-konform vor. Der WMS beinhaltet den folgenden Layer: • LU.ExistingLandUse: Ein Objekt zur existierenden Bodennutzung beschreibt die Bodennutzung in einem Gebiet miteinheitlicher Bodennutzungskategorie oder homogener Kombination verschiedener Bodennutzungen. --- The compliant INSPIRE-WFS is a view service that delivers data in the Annex-Schema Existing Land Use (derived from the original data set: Data from the agricultural aid application). The content is compliant to the INSPIRE data specification for the annex theme Land Use (D2.8.III.4_v3.1.1). The WMS includes the following layer: • LU.ExistingLandUse: An existing land use object describes the land use of an area having a homogeneous combination of land use types. Maßstab: 1:2400; Bodenauflösung: 2.4m; Scanauflösung (DPI): null

INSPIRE-WFS Land Use / InVeKoS Landwirtschaftliche Parzellen BB

Der interoperable INSPIRE-WFS ist ein Downloaddienst, der Daten im Annex-Schema Existierende Bodennutzung (abgeleitet aus dem originären Datensatz: Daten aus dem Agrarförderantrag) bereitstellt. Gemäß der INSPIRE-Datenspezifikation Land Use (D2.8.III.4_v3.0.0) liegen die Inhalte INSPIRE-konform vor. Der WFS beinhaltet die folgenden FeatureTypes: • Datensatz zur existierenden Bodennutzung (elu:ExistingLandUseDataSet): Ein Datensatz zur existierenden Bodennutzung ist eine Sammlung von Flächen, für die Informationen zur existierenden (gegenwärtigen oder früheren) Bodennutzung angegeben sind. • Objekt zur existierenden Bodennutzung (elu:ExistingLandUseObject): Ein Objekt zur existierenden Bodennutzung beschreibt die Bodennutzung in einem Gebiet mit einheitlicher Bodennutzungskategorie oder homogener Kombination verschiedener Bodennutzungen. --- The compliant INSPIRE-WFS is a download service that delivers data in the Annex-Schema Existing Land Use (derived from the original data set: Data from the agricultural aid application). The content is compliant to the INSPIRE data specification for the annex theme Land Use (D2.8.III.4_v3.0.0). The WFS includes the following feature types: • Existing land use data set (elu:ExistingLandUseDataSet): An existing land use data set is a collection of areas for which information on existing (present or past) land uses is provided. • Existing land use object (elu:ExistingLandUseObject): An existing land use object describes the land use of an area having a homogeneous combination of land use types. Maßstab: 1:2400; Bodenauflösung: 2.4m; Scanauflösung (DPI): null

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Verknüpfung von Landnutzungsintensität, Biodiversität, bodenmikrobiellen Prozessen und organo-mineralischen Interaktionen für ein mechanistisches Verständnis des Stickstoffumsatzes in Grünlandökosystemen

Zunehmende Landnutzungsintensität (LUI) verursacht umweltrelevante Stickstoff (N)-Verluste und den Rückgang von Artenvielfalt und Multifunktionalität in Grünlandökosystemen. Gezielte Minderungsstrategien werden jedoch durch ein mangelhaftes mechanistisches Verständnis der Wechselwirkungen zwischen LUI, ober- und unterirdischer Biodiversität und dem N-Kreislauf verhindert. BE_BioMON will über die interdisziplinäre Integration von molekularbiologischer Bodenökologie, biogeochemischer Prozessforschung zur kurzfristigen N-Allokation im System Pflanze-Boden-Mikroorganismen und physikochemischer Prozessforschung zur langfristigen Retention von organischem Stickstoff (SON) diese Wissenslücke schließen. Dabei werden Messungen und Modellierungen verknüpft. Wir erwarten, dass sich mit abnehmendem LUI und einem artenreicheren Mikrobiom die N-Verteilung von Nitrifikation/Denitrifikation zu biotischer Assimilation verschiebt. Dies fördert die N-Retention durch Nekromassestabilisierung in partikulärem und mineralassoziiertem SON in Abhängigkeit von Aggregatumsatz und mikroskaliger Bodenarchitektur. Wir nehmen zudem an, dass eine Erhöhung der LUI zu einer Verschiebung von symbiotischer zu assoziativer N-Fixierung führt, was das N2:N2O-Emissionsverhältnis aufgrund verkürzter Denitrifikation bei symbiotischen N-Fixierern erhöhen wird. Darüber hinaus erwarten wir, dass d15N im Boden einen Fingerabdruck der Auswirkungen der LUI auf den N-Kreislauf liefert und somit als prozessintegrierende Bezugsgröße für Ökosystemmodelle dienen kann. Wir erwarten uns hiervon eine verbesserte räumlich-zeitliche Skalierung von LUI-Effekten auf den N-Kreislauf. Um die Hypothesen zu testen, werden wir 15N-Dünger-Tracing-Experimente auf ausgewählten Parzellen unterschiedlicher LUI in allen 3 Biodiversitätsexploratorien (BE) durchführen (WP1). In WP2 werden Mesokosmen-Experimente unter 15N2-Exposition durchgeführt, um die Auswirkungen von LUI auf Umsetzung von BNF-N zu untersuchen. WP3 zielt darauf, den N-Kreislauf im Rahmen der BE-Bodenbeprobungskampagne auf allen Grünland-EPs durch vertikale d15N-Bodenprofile, Metagenomik und SON-Fraktionierung zu bestimmen. Die gewonnenen Erkenntnisse aus WP1-3 und aus bereits verfügbaren BExIS-Daten werden zum Testen und Weiterentwickeln der N-Routinen des prozessbasierten Ökosystemmodells LandscapeDNDC verwendet. Dieses Modell, erweitert um ein dynamisches Vegetationsmodell CoSMo, wird dann verwendet, um den N-Kreislauf für die sämtliche BE-Grünlandparzellen zu simulieren (WP4). In WP5 (Synthese) werden wir LUI und Biodiversität, gemessene und modellierte biogeochemischen N-Umsetzungen, N-Retention durch organo-mineralische Interaktionen und vollständige N-Bilanzen auf Skalen von Tagen bis Jahren mechanistisch verknüpfen. Wir erwarten somit, dass diese Synthese ein mechanistisches und funktionales Verständnis des N-Kreislaufs unter dem Einfluss von LUI, ober- und unterirdischer Biodiversität sowie standortspezifischen Eigenschaften ermöglicht.

Stärke und Zucker

Stärke ist ein pflanzlicher Reservestoff, der in Form von Stärkekörnern in Speicherorganen von Pflanzen (Körner, Knollen, Wurzeln oder Mark) angereichert wird. Stärke wird sowohl im Lebensmittel - als auch im technischen Bereich in breitem Umfang eingesetzt. Die landwirtschaftliche Erzeugung von stärkehaltigen Rohstoffen erfolgt in Deutschland durch den Anbau von Kartoffel, Weizen und Körnermais. In der Zukunft könnten die Markerbse und Neuzüchtungen mit sehr hohem Amylose- ("Amylo-Mais") oder Amylopektinanteil (z. B. Amylose-freie Kartoffel) Bedeutung erlangen, da sich hierdurch verarbeitungs- und anwendungstechnische Vorteile ergeben. Hinsichtlich der Verwendung werden drei wesentliche Produktlinien unterschieden - native Stärke (Papier, Pappe, Leime, Kleber, Gipskartonplatten, Textilverarbeitung, Kosmetika), - modifizierte Stärke (Lacke, Streichfarben, Bindemittel (Quellstärken), kationische Stärken, Papier, Pappe, Tabletten, Stärkeether und -ester) etc. sowie - Verzuckerungsprodukte (Tenside, Sorbit, Kunststoffe, Vitamin C, Alkohole, Biotechnologie).

Die vertikale Dimension des Naturschutzes: Ein kostengünstiger Plan zur Einbeziehung unterirdischer Ökosysteme in die Biodiversitäts- und Klimaschutzagenden nach 2020

Subterrane Ökosysteme beherbergen eine breite Vielfalt spezialisierter und endemischer Organismen, die einen einzigartigen Bruchteil der globalen Vielfalt ausmachen. Darüber hinaus leisten sie entscheidende Beiträge der Natur für die Menschen – insbesondere die Bereitstellung von Trinkwasser für mehr als die Hälfte der Weltbevölkerung. Diese unsichtbaren Ökosysteme werden jedoch bei den Biodiversitäts- und Klimaschutzzielen für die Zeit nach 2020 übersehen. Nur 6,9 % der bekannten subterranen Ökosysteme überschneiden sich mit dem ´Netzwerk von Schutzgebieten. Zwei Haupthindernisse sind für diesen Mangel an Schutz verantwortlich. Erstens bleiben subterrane Biodiversitätsmuster weitgehend unkartiert. Zweitens fehlt uns ein mechanistisches Verständnis der Reaktion subterraner Arten auf vom Menschen verursachte Störungen. Das DarCo-Projekt zielt darauf ab, subterrane Biodiversität in ganz Europa zu kartieren und einen expliziten Plan zur Einbeziehung subterraner Ökosysteme in die Biodiversitätsstrategie der Europäischen Union (EU) für 2030 zu entwickeln. Zu diesem Zweck haben wir ein multidisziplinäres Team führender Wissenschaftler in subterraner Biologie und Makroökologie zusammengestellt und Naturschutz aus einem breiten Spektrum europäischer Länder. Das Projekt gliedert sich in drei Arbeitspakete, die der direkten Forschung gewidmet sind (WP2-4), plus ein viertes (WP5), das darauf abzielt, die Verbreitung der Ergebnisse und das Engagement der Interessengruppen für die praktische Umsetzung des Naturschutzes zu maximieren. Zunächst werden wir durch die Zusammenstellung bestehender Datenbanken und die Nutzung eines kapillaren Netzwerks internationaler Mitarbeiter Verbreitungsdaten, Merkmale und Phylogenien für alle wichtigen subterranen Tiergruppen sammeln, einschließlich Krebstiere, Mollusken, Insekten und Wirbeltiere (WP2). Diese Daten werden dazu dienen, die Reaktionen von Arten auf menschliche Bedrohungen mithilfe der hierarchischen Modellierung von Artengemeinschaften (WP3) vorherzusagen. Die Vorhersagen der Modelle zur Veränderung der biologischen Vielfalt werden die Grundlage für eine erste dynamische Kartierung des subterranen Lebens in Europa bilden. Durch die Verschneidung von Karten von Diversitätsmustern, Bedrohungen und Schutzgebieten werden wir einen Plan zum Schutz der subterranen Biodiversität entwerfen, der das aktuelle EU-Netzwerk von Schutzgebieten (Natura 2000) ergänzt und gleichzeitig klimabedingte Veränderungen in subterranen Ökoregionen berücksichtigt (WP4). Schließlich versuchen wir durch gezielte Aktivitäten in WP5, das gesellschaftliche Bewusstsein für subterrane Ökosysteme zu schärfen und Interessengruppen einzuladen, die subterrane Biodiversität in multilaterale Vereinbarungen einzubeziehen. In Übereinstimmung mit dem europäischen Plan S werden wir alle Daten offen und wiederverwendbar machen, indem wir eine zentralisierte und offene Datenbank zum subterranen Leben entwickeln – die Subterranean Biodiversity Platform.

Organisches Material im anoxischen Milieu: Energie entschlüsselt Komplexität

Binnengewässer sind wichtiger Teil des globalen Kohlenstoffkreislaufs, da sie der terrestrischen Biosphäre entstammende Biomasse (organisches Material, OM) aufnehmen und umsetzen. Gelöstes OM beeinflusst Farbe und Zustand der Gewässer und subventioniert als Energieträger das aquatische Nahrungsnetz. Der Umsatz des OM wird von dessen oxidativer Mineralisation getrieben, daher wird die Sauerstoffverfügbarkeit als kritischer Einflussfaktor gesehen. Jedoch findet auch in sauerstofffreien, anoxischen Zonen rege Produktion, Mineralisation und Transformation von OM statt. Die chemische Zusammensetzung des OM wird in anoxischen Zonen auf spezifischen Reaktionspfaden transformiert. Zu diesen Pfaden gehört (1.) der bevorzugte Abbau von energiereichen OM-Fraktionen, (2.) die Anreicherung von mikrobiellem OM, sowie (3.) der Einbau von anaerob entstandenem Wasserstoff in OM. Anoxische Zonen sind in kontinentalen und marinen Gewässern bereits heute weit verbreitet. Ihre weitere Ausdehnung ist vorhergesagt. Trotzdem ist unklar, unter welchen Bedingungen die anoxischen Reaktionspfade aktiviert werden und wie sie gemeinsam den Kohlenstoffkreislauf und aquatische Ökosystemfunktionen beeinflussen. Ziel dieses Projekts ist es daher, das Zusammenspiel anoxisch ablaufender OM Transformationen aufzuklären. Zu diesem Zweck entwickeln wir eine OM Charakterisierung basierend auf der (Gibbs-) Energie seiner molekularen Bestandteile. Die Energieeigenschaften des OM dienen als Bezugssystem, mit dem sich aktive Reaktionspfade einschließlich ihre spezifischen Einflussfaktoren unterscheiden lassen. Auf Grundlage dieses Bezugssystems können wir die orts- und substratspezifischen Faktoren identifizieren, die mit der molekulare OM Zusammensetzung variieren. Entlang aquatischer Netzwerke werden wir dann analysieren, wie anoxische Zonen einen spezifischen Fingerabdruck im OM formen. Die Ergebnisse dieses Projekts werden eine neuartige, energiezentrierte Charakterisierung von organischem Material begründen. Damit können wir langfristig unser Verständnis des Umweltverhaltens von OM, insbesondere unter anoxischen Bedingungen, verbessern.

Flammenhemmendes Coating - ökologischer Brandschutz in Schienenfahrzeugen, Teilvorhaben 4: Entwicklung eines Brandschutzlackes auf Basis von Phosphonsäuren

Flammenhemmendes Coating - ökologischer Brandschutz in Schienenfahrzeugen, Teilvorhaben 3: Entwicklung eines Flammschutzmittels auf Basis von Phosphonsäuren

1 2 3 4 5179 180 181