Subterrane Ökosysteme beherbergen eine breite Vielfalt spezialisierter und endemischer Organismen, die einen einzigartigen Bruchteil der globalen Vielfalt ausmachen. Darüber hinaus leisten sie entscheidende Beiträge der Natur für die Menschen – insbesondere die Bereitstellung von Trinkwasser für mehr als die Hälfte der Weltbevölkerung. Diese unsichtbaren Ökosysteme werden jedoch bei den Biodiversitäts- und Klimaschutzzielen für die Zeit nach 2020 übersehen. Nur 6,9 % der bekannten subterranen Ökosysteme überschneiden sich mit dem ´Netzwerk von Schutzgebieten. Zwei Haupthindernisse sind für diesen Mangel an Schutz verantwortlich. Erstens bleiben subterrane Biodiversitätsmuster weitgehend unkartiert. Zweitens fehlt uns ein mechanistisches Verständnis der Reaktion subterraner Arten auf vom Menschen verursachte Störungen. Das DarCo-Projekt zielt darauf ab, subterrane Biodiversität in ganz Europa zu kartieren und einen expliziten Plan zur Einbeziehung subterraner Ökosysteme in die Biodiversitätsstrategie der Europäischen Union (EU) für 2030 zu entwickeln. Zu diesem Zweck haben wir ein multidisziplinäres Team führender Wissenschaftler in subterraner Biologie und Makroökologie zusammengestellt und Naturschutz aus einem breiten Spektrum europäischer Länder. Das Projekt gliedert sich in drei Arbeitspakete, die der direkten Forschung gewidmet sind (WP2-4), plus ein viertes (WP5), das darauf abzielt, die Verbreitung der Ergebnisse und das Engagement der Interessengruppen für die praktische Umsetzung des Naturschutzes zu maximieren. Zunächst werden wir durch die Zusammenstellung bestehender Datenbanken und die Nutzung eines kapillaren Netzwerks internationaler Mitarbeiter Verbreitungsdaten, Merkmale und Phylogenien für alle wichtigen subterranen Tiergruppen sammeln, einschließlich Krebstiere, Mollusken, Insekten und Wirbeltiere (WP2). Diese Daten werden dazu dienen, die Reaktionen von Arten auf menschliche Bedrohungen mithilfe der hierarchischen Modellierung von Artengemeinschaften (WP3) vorherzusagen. Die Vorhersagen der Modelle zur Veränderung der biologischen Vielfalt werden die Grundlage für eine erste dynamische Kartierung des subterranen Lebens in Europa bilden. Durch die Verschneidung von Karten von Diversitätsmustern, Bedrohungen und Schutzgebieten werden wir einen Plan zum Schutz der subterranen Biodiversität entwerfen, der das aktuelle EU-Netzwerk von Schutzgebieten (Natura 2000) ergänzt und gleichzeitig klimabedingte Veränderungen in subterranen Ökoregionen berücksichtigt (WP4). Schließlich versuchen wir durch gezielte Aktivitäten in WP5, das gesellschaftliche Bewusstsein für subterrane Ökosysteme zu schärfen und Interessengruppen einzuladen, die subterrane Biodiversität in multilaterale Vereinbarungen einzubeziehen. In Übereinstimmung mit dem europäischen Plan S werden wir alle Daten offen und wiederverwendbar machen, indem wir eine zentralisierte und offene Datenbank zum subterranen Leben entwickeln – die Subterranean Biodiversity Platform.
Gewässerrenaturierungsprojekte zielten bisher hauptsächlich darauf ab, natürliche lokale Habitatbedingungen wiederherzustellen und dadurch die Biodiversität zu erhöhen. Dieser habitatbasierte Ansatz auf lokaler Ebene vernachlässigt den starken Einfluss von großräumigen Umweltfaktoren. Außerdem sind die gesellschaftlichen Bedürfnisse und der Nutzen von Renaturierungen bislang kaum untersucht und ihre Beziehung zum lokalen und regionalen Umweltkontext unklar. In letzter Zeit wurden Konzepte zu den relevanten räumlichen Skalen für die Gewässerrenaturierung entwickelt, diese wurden aber noch nicht an großen Datensätzen getestet. Das COSAR-Projekt untersucht den Einfluss des gegenwärtigen und historischen räumlichen Kontextes von Renaturierungsprojekten auf die ökologischen und gesellschaftlichen Renaturierungsergebnisse. Die Projektpartner kombinieren ihre vorhandenen ökologischen Monitoringdaten von 200 Restaurierungsprojekten aus Mittel- und Nordeuropa. Zusätzlich werden Social-Media-Posts von renaturierten Standorten analysiert, um Rückschlüsse auf Ökosystemleistungen und die Interaktion der Menschen mit renaturierten Standorten zu ziehen. Das Projekt besteht aus drei Arbeitsschritten. Erstens definieren und quantifizieren wir ökologische und gesellschaftliche Indikatoren für den Erfolg von Renaturierungen und untersuchen ihre Synergien und Zielkonflikte. Zweitens kontextualisieren wir die ökologischen und gesellschaftlichen Restaurierungsergebnisse mit biotischen und abiotischen Umwelt- und sozioökonomischen Daten auf verschiedenen räumlichen Skalen, um die relevanten Treiber und Skalen zu identifizieren, die den Renaturierungserfolg fördern oder verhindern. In diesen Analysen berücksichtigen wir auch historische Umweltbedingungen. Drittens entwickeln und verbreiten wir ein interaktives Online-Werkzeug, das während der Restaurierungsplanung genutzt werden kann, um das in den ersten beiden Stufen gewonnene Wissen auf eigene Restaurierungsszenarien anzuwenden. Zusätzlich stellen wir Faktenblätter zur Verfügung und zeigen Best-Practice-Beispiele für die Renaturierungsplanung auf. Wir wenden einen transdisziplinären Ansatz an und legen großen Wert auf die Einbindung von Stakeholdern in allen Projektphasen. Diese Stakeholder vertreten verschiedene Interessengruppen aus allen am Projekt beteiligten Nationalitäten. Sie helfen bei der Identifizierung der relevanten Erfolgsindikatoren, gestalten den Fokus der Kontextanalysen, geben Ratschläge, um die Relevanz und Benutzerfreundlichkeit der Projektergebnisse sicherzustellen und fungieren als Botschafter bei der Verbreitung der Projektergebnisse. Mit diesem Projektdesign stellen wir neues Wissen und Werkzeuge zur Verfügung, um den ökologischen und gesellschaftlichen Nutzen von Renaturierungsprojekten zu fördern, die Planung vielversprechender Renaturierungsprojekte zu erleichtern um die Ziele der Wasserrahmenrichtlinie und die Sustainable Development Goals 3, 6, 14 &15 zu erreichen.
Die Rolle der Fische beim Energie- und Naehrstoffumsatz soll einerseits im Hallwilersee (z.B. Grazing-Effekt) und andererseits in der Glatt (Forschungs-Schwerpunkt 'Fliessgewaesser') untersucht und quantitativ erfasst werden. Dabei geht es in erster Linie um die Frage, welchen Einfluss die Fische auf Zusammensetzung und Abundanz der jeweiligen Futterorganismen wie Zooplankton oder Benthos ausueben und welchen Beitrag sie an die Remobilisation von Naehrstoffen leisten. Die Arbeiten sollen in enger Zusammenarbeit mit der Fachabteilung Hydrobiologie/Limnologie durchgefuehrt werden.
La presence de polychlorobiphenyles (pcb) a ete etudiee dans les sediments et un ecosysteme lemanique: Le site des grangettes. La concentration en pcb dans les sediments cotiers de la rive suisse du leman peut etre consideree comme elevee, en particulier en face de l'agglomeration lausannoise et de montreux. Des echantillons de sediment ont presente jusqu'a 540 microg. Par kg de matiere seche de pcb. La bioaccumulation des pcb au long des etages trophiques representes par des especes du site des grangettes est particulierement nette. Les deux phenomenes d'accumulation trophique et par partition semblent devoire etre mis en cause, le premier etant plus net en ce qui concerne les especes predatrices (lottes, truites, grebes huppes). La modeliation des phenomenes d'eutrophisation est entreprise en comparant les resultats obtenus sur la truite entre la bioaccumulation des pcb et celle d'en metal lourd.Il sera teste la validite du modele de norstrom. Nature du projet: Recherche appliquee et fondamentale. (FRA)
Die Behandlung der insbesondere mit PCB-verunreinigten Boeden erfolgt in einer zentralen biologischen Behandlungsanlage. Nach Einlagerung des zu behandelnden Bodens in drei Behandlungsfelder in geschlossener Leichtbauweise mit einer Gesamtkapazitaet von 7 125 m3 wird der Boden mit Klaeranlagenwasser, das mit Mikroorganismen angereichert ist (Patent BASF Lacke + Farben AG) berieselt. Um die hoechste Abbauaktivitaet der Mikroorganismen zu erreichen, wird die Raumluft auf 20 bis 42 Grad Celsius erwaermt. Gleichzeitig wird erwaermte Luft von unten in den Boden gepresst. Die abgesaugte Hallenluft wird ueber einen Aktivkohlefilter abgeleitet. Fuer die Verrieselung wird Brauchwasser (Klaeranlagenwasser oder Oberflaechenwasser) verwendet, das im Bedarfsfall in einem Vorlagetank mit Naehrstoffen versetzt wird. Der gereinigte Boden wird einer Wiederverwertung (Strassen- und Kanalbau, Laermschutzwaelle) zugefuehrt.
Eine hohe Salzkonzentration im Boden führt bei Pflanzen unweigerlich zu schwerem Wassermangel. Vor dem Hintergrund des Klimawandels wird dies weltweit als eine große Bedrohung für die landwirtschaftliche Produktion angesehen. Klimamodelle sagen bis zum Jahr 2050 einen zunehmenden Druck der Salinität der Böden auf die landwirtschaftliche Produktivität voraus. Das Verständnis und die Nutzung der Toleranz von Pflanzen gegenüber hohen Salzkonzentrationen werden daher zu einer großen wissenschaftlichen Herausforderung. Die Verbesserung der Salztoleranz ist komplex, da sie als quantitatives Merkmal reguliert wird, an dem mehrere genetische Pfade gleichzeitig beteiligt sind. Die offensichtliche Auswirkung von Salzstress auf das Pflanzenwachstum und die Produktion besteht darin, dass die Pflanzenwurzeln Probleme haben, Wasser aufzunehmen, indem sie den osmotischen Stress in den Wurzelzellen und die Ionentoxizität (z. B. Na+) reduzieren. Gegenwärtig fehlt es an Wissen über die Auswirkungen des Salzgehalts auf die Regulierung des Primärstoffwechsels sowie über die molekularen Grundlagen bezüglich der Gene, welche zur Salztoleranz bei Nutzpflanzen beitragen. Im Rahmen dieses Forschungsvorhabens möchte ich neue genetische und molekulare Wege zur Charakterisierung der Regulierung salztoleranzbezogener Merkmale im Keimlings-, vegetativen und Reproduktionsstadium in zwei hochdiversen Gerstenkollektionen entdecken und erklären. Meine Hypothese ist, dass die Identifizierung neuer Loci und Gene, die eine wichtige Rolle bei der Anpassung von Gerste an Salzstress spielen, Züchtungsprogramme zur Bewältigung des Klimawandels und die nachhaltige Produktion von Gerste und anderen Kulturpflanzen wie Weizen erheblich unterstützen wird. Um mein Forschungsziel zu erreichen, werde ich mich auf die Charakterisierung der weltweit sehr diversen Gerstensammlungen HEB-25 und der Intermedium-spike Gerstensammlung konzentrieren, um Eigenschaften zu untersuchen, die mit dem Pflanzenertrag unter Salzstress zusammenhängen. Der nächste Schritt besteht darin, die Sequenz der nützlichen Allele wilder Verwandter mithilfe von Genomeditierung in Elitegerste einzuführen. Dieser zweite Ansatz würde darin bestehen, alle Probleme außer Acht zu lassen, da das Kandidatengen für die Blütenentwicklung essentiell ist und ein vollständiger Knockout tödlich wäre. Ich werde diese Forschungsarbeiten an der sehr gut entwickelten und etablierten Professur für Pflanzenzüchtung der Universität Halle (MLU) durchführen, welche einen einzigartigen Ausgangspunkt für ein Forschungsnetzwerk zum Thema Salinitätsstress bietet, in Kooperation mit führenden Pflanzenwissenschaftlern der Naturwissenschaftlichen Fakultät III der MLU und des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung (IPK).
Nichtlineare, stochastische und dissipative geophysikalische Strömungen in Atmosphäre und Ozean sind Teil der Turbulenztheorie. Diese beeinflussen die Dynamik im Bereich von Zentimetern bis zu mehreren hundert Metern sowie die meso- und synoptischen Skalen. Ein Beispiel hierfür ist das Powerspektrum von mesoskaligen horizontalen Winden, das sich statistisch ähnlich wie Meterskalen verhält und mit den Vorhersagen der klassischen isotropen 3D Turbulenz übereinstimmt, wie sie in der Arbeit von Nastrom und Gage von 1984 gefunden wurde. Diese Erkenntnis machte neue Turbulenztheorien nötig, die eine Alternative zur klassischen Erklärung der Schwerewellen bieten könnten, um die Physik hinter der mesoskaligen Dynamik in geophysikalischen Strömungen zu verstehen, wie etwa die Theorie der stratifizierten (geschichteten) Turbulenz (ST). Ein leistungsfähiges Untersuchungsinstrument der ST-Theorie ist die Analyse von Statistikdaten höherer Ordnung von Zustandsvariablen, die das mittlere Strömungsverhalten beschreiben. Dies gilt insbesondere für die Strukturfunktion (SF), die Messungen der gleichen Parameter zu verschiedenen Zeitpunkten und an verschiedenen Orten auf einen einzigen Wert, durch die Schätzung von Ensemble-Mittelwerten, synthetisiert. Eine wesentliche Einschränkung bei der Untersuchung der mesoskaligen Dynamik der Winde durch die Abschätzung von SFs hoher Ordnung für verschiedene atmosphärische Höhen ist jedoch der Mangel an geeigneten Messmöglichkeiten, die die horizontalen Mesoskalen mit ausreichend hoher Auflösung und zeitkontinuierlich erfassen können. Im Bereich der Mesosphäre und der unteren Thermosphäre (MLT) haben multistatische Meteorradarsysteme (SMRs) kürzlich bewiesen, dass sie diese Anforderungen erfüllen. Im Rahmen dieses Projekts werden zwei Hauptthemen verfolgt. Das erste ist die umfassende Analyse und Charakterisierung von SFs zweiter Ordnung der horizontalen mesoskaligen Winde aus multistatischen SMRs Beobachtungen in der MLT-Region. Wir wollen die Gültigkeit der Eigenschaft der horizontalen Isotropie beurteilen und ihre Auswirkungen auf die Dynamik von Rotations- und Divergenzmoden bewerten. Für diese Aufgaben stehen Messungen in mittleren und hohen Breitengraden zur Verfügung. Das zweite Hauptthema ist die Anwendung von Wind-SFs höherer Ordnung, die über die zweite Ordnung hinausgehen, unter Verwendung von MST-Radarwinddaten an einem einzelnen Standort. Die Anwendung der Taylor-Approximation Methode wird die Untersuchung der räumlichen Verschiebungen erleichtern, die aus zeitlichen Verzögerungen bestimmt werden. Die Methode wird anhand von Winden in der oberen Troposphäre und der unteren Stratosphäre implementiert und dann auf die mesosphärischen Winde ausgedehnt. Die Ergebnisse dieses Projekts werden Erkenntnisse über die Unterschiede und Gemeinsamkeiten im statistischen Verhalten der mesoskaligen Winde in verschiedenen atmosphärischen Höhen liefern.
Wasserbasierte Formulierungen zeigen eine Anfälligkeit für mikrobielle Verkeimung, die aktuell nur über den Einsatz geeigneter Biozide unterbunden werden kann. Bedingt durch die gesetzliche Limitierung der Methylisothiazolinon-Einsatzmenge (MIT) auf maximal 15 ppm für die Begrenzung des bakteriellen Wachstums, steht kein weiteres biozides Mittel mit einem solchen Wirkspektrum zur Verfügung. Alternative Ansätze wie ein hoher pH-Wert, z.B.bei Silikatfarben, können bei Hydro-Lacken und wässrigen Beizen nicht verfolgt werden. Dieses Defizit soll zur Vervollständigung einer ökologischeren, wasserbasierten Strategie für Lacke und Beizen durch den Einsatz geeigneter natürlicher Substanzen wie ätherischen Ölen und anderen Pflanzenextrakten ausgeglichen werden. Diese aus biogenen Rohstoffen isolierten biobasierten Feinchemikalien besitzen oft ein nachgewiesenermaßen breites Wirkspektrum. Besondere Herausforderungen beim Einsatz ätherischer Öle ergeben sich jedoch aus ihrem oftmals intensiven Geruch, der schlechten Wasserlöslichkeit und ihrer hohen Flüchtigkeit. Kompensiert werden sollen diese Nachteile durch die Mikroverkapselung dieser Biorohstoffe mit Hilfe der ebenfalls biobasierten Cyclodextrine. Damit wird gleichzeitig die Abhängigkeit von erdölbasierten Bioziden als Beitrag zur Ressourcenschonung reduziert.
Methan (CH4) ist ein potentes Treibhausgas, das zur globalen Erwärmung beiträgt und eine wichtige Rolle in der Atmosphärenchemie spielt. Aquatische Systeme wurden kürzlich als bedeutende Quellen von CH4 identifiziert, die bis zu 50 % zu den globalen CH4-Emissionen ausmachen. Es besteht jedoch weiterhin erhebliche Unsicherheit über das Ausmaß dieser Emissionen, insbesondere über deren räumliche und zeitliche Treiber. Dies gilt besonders für CH4-Emissionen aus den aquatischen Systemen der Arktis, die bisher kaum untersucht wurden. Um das Verständnis des globalen CH4-Budgets zu verbessern, ist es daher entscheidend die Quellen von CH4 in aquatischen Systemen genau zu charakterisieren und zu klassifizieren. Aktuelle Methoden zur Klassifizierung von CH4-Quellen nutzen stabile Isotopenverhältnisse wie stabile Kohlenstoff- (delta13C) und Wasserstoff- (delta2H) Isotopenwerte von CH4 (13C vs. 2H Diagramme) sowie geochemische Bernard-Verhältnisse, welche die molaren Verhältnisse von CH4 zu Ethan und Propan gegen delta13C-CH4 Werte darstellt (Bernard-Diagramme). Beide Diagramme werden verwendet, da verschiedene CH4-Quellen durch spezifische Bereiche von delta13C- und delta2H-CH4-Werten sowie Bernard-Verhältnissen charakterisiert sind. Eine wesentliche Einschränkung ergibt sich aus der CH4-Oxidation (MOx) durch methanotrophe Bakterien, die in aquatischen Umgebungen weit verbreitet sind. Dieser Prozess verändert die CH4-Konzentrationen und stabilen Isotopenwerte sowie die Ethan- und Propankonzentrationen, wobei die Oxidation dieser Gase bezüglich der CH4-Quellenklassifizierung bisher unberücksichtigt bleibt. Dies kann zu einer erschwerten Klassifizierung von CH4-Quellen bis hin zu Fehlinterpretationen führen. Ein vielversprechender neuer Parameter, um die Klassifizierung von CH4-Quellen in dieser Hinsicht zu verbessern, ist der sogenannte Delta(2,13)-Parameter, der auf den delta13C- und delta2H-Werten von CH4 basiert, jedoch zusätzlich für die durch MOx verursachte Isotopenfraktionierung korrigiert. Derzeit beeinträchtigen jedoch die begrenzte Nutzung des Delta(2,13) Parameters sowie fehlendes Wissen über potenzielle Einflussfaktoren seine Zuverlässigkeit und erfordern eine systematische Untersuchung. Das Ziel von AMIOX ist es, das Verständnis des aquatischen CH4-Kreislaufs zu vertiefen, indem die Klassifizierung von CH4-Quellen und -Senken in gemäßigten und arktischen aquatischen Systemen verbessert wird. Dies soll durch die Einführung des neuen Delta(2,13)-Parameters in Kombination mit Bernard- und 13C vs. 2H-CH4 Diagrammen erreicht werden. Um diese Ziele zu erreichen, werde ich den Einfluss von MOx auf die Delta(2,13)-Werte und Bernard-Verhältnisse durch drei weit verbreitete methanotrophe Spezies in Laborstudien unter verschiedenen Umweltbedingungen untersuchen. Schließlich werde ich die erworbenen Erkenntnisse im Feld anwenden, um das Verständnis des CH4-Kreislaufs in Seen in gemäßigten Breiten in Deutschland und arktischen Seen in Grönland zu verbessern.
| Origin | Count |
|---|---|
| Bund | 1107 |
| Kommune | 17 |
| Land | 659 |
| Wirtschaft | 1 |
| Wissenschaft | 8 |
| Zivilgesellschaft | 13 |
| Type | Count |
|---|---|
| Chemische Verbindung | 11 |
| Daten und Messstellen | 481 |
| Ereignis | 7 |
| Förderprogramm | 936 |
| Gesetzestext | 6 |
| Software | 1 |
| Taxon | 2 |
| Text | 198 |
| Umweltprüfung | 14 |
| WRRL-Maßnahme | 1 |
| unbekannt | 101 |
| License | Count |
|---|---|
| geschlossen | 270 |
| offen | 1468 |
| unbekannt | 15 |
| Language | Count |
|---|---|
| Deutsch | 1655 |
| Englisch | 211 |
| andere | 2 |
| Resource type | Count |
|---|---|
| Archiv | 480 |
| Bild | 8 |
| Datei | 35 |
| Dokument | 124 |
| Keine | 733 |
| Multimedia | 2 |
| Unbekannt | 4 |
| Webdienst | 16 |
| Webseite | 901 |
| Topic | Count |
|---|---|
| Boden | 1304 |
| Lebewesen und Lebensräume | 1342 |
| Luft | 1194 |
| Mensch und Umwelt | 1748 |
| Wasser | 1161 |
| Weitere | 1668 |