API src

Found 1368 results.

Similar terms

s/layer/Laser/gi

Projekt zur Entwicklung einer laserbasierten Neutronenquelle für die zerstörungsfreie Prüfung von industriell relevanten Objekten (PLANET), Teilvorhaben: Optimierung der Laserionenbeschleunigung

Bestimmung und Vorhersage des Oberflächencoatings von Nanopartikeln, dessen molekularer Zusammensetzung, physico-chemischen Eigenschaften und der kolloidalen Stabilität nach in-situ-Exposition gegenüber natürlichen Gewässern

Nanopartikel (NP) sind neuartige Schadstoffe, deren Umweltverhalten sich grundlegend von molekularen Schadstoffen unterscheidet. Die Sorption von natürlichen organischen Substanzen (NOM) an NP ist ein Schlüsselfaktor für das weitere Umweltverhalten der NP wie Aggregation oder Sorption auf Oberflächen. Verfügbaren Daten zum Verhalten von NP beschränken sich auf Laborstudien unter stark vereinfachte Bedingungen. Für die Modellierung des Verbleibs von NP in der Umwelt ist es daher unerlässlich, die Sorptionsmechanismen unter umweltrelevanten Bedingungen zu erforschen. Dafür haben wir eine neue Methode entwickelt und validiert, bei der die NP mittels eines Dialysebeutels im Kontakt mit den gelösten Komponenten des Gewässers gebracht werden. Diese Methode ermöglicht es erstmals Partikel mit einer realistischen NOM Oberflächenbeschichtung (Coating) zu erhalten. Moderne Methoden der Oberflächencharakterisierung erlauben es zudem, die Zusammensetzung und Eigenschaften von NP Coatings detailliert zu untersuchen. Ziel dieses Projekts ist es, die Sorptionsmechanismen unter Umweltbedingungen, ihren Einfluss auf die kolloidale Stabilität und ihren Zusammenhang mit dem initialen NP Coating zu erforschen und vorherzusagen. Dazu werden die Zusammensetzungen und die Eigenschaften der unter Feldbedingungen gebildeten NP Coatings für fünf TiO2-Nanopartikeltypen, einschließlich der aus kommerziellen Produkten extrahierten Partikel, untersucht. Diese Partikel werden in 60 ausgewählten Gewässern, welche einer großen Bandbreite an wasserchemischen Parametern entsprechen, mittels Dialysebeutelmethode exponiert. Nach der Entnahme werden die Partikel mit XPS, FT-IR, ToF-SIMS und AFM analysiert, um die Oberflächenzusammensetzung, den Sorptionsmodus und die Schichtdicke des Coatings zu bestimmen. Zur Untersuchung der Schichtdicke mittels AFM wird eine neu entwickelte Probenpräparationsmethode weiterentwickelt und validiert. Die molekulare Zusammensetzung und Stabilität der NP Coatings werden mittels direkter Messung von Molekülen auf der Partikeloberfläche mit einer neu entwickelten Laser-Desorptions-Ionisation ultrahochauflösender FT-ICR MS Methode sowie sequentieller Extraktion, gefolgt von Elektrospray-Ionisation FT-ICR MS untersucht. Zudem werden Experimente zur Aggregationskinetik der exponierten NP durchgeführt. Dazu werden Proben der 60 Gewässer mit und ohne natürliche Kolloide verwendet, um Hetero- und Homoaggregation zu berücksichtigen. Die gewonnenen Daten werden in ein multivariates Machine-Learning-Modell einfließen, um die Beziehung zwischen initialem Coating, Coating mit NOM nach Exposition, der Gewässerchemie und der Aggregation der Partikel zu bestimmen und um die Eigenschaften des Coatings und die Aggregationsrate aus den vorliegenden Wasserparametern vorherzusagen. Die Modellergebnisse werden wertvolle Beiträge für die Vorhersage des Umweltverhaltens von Nanopartikeln in natürlichen Gewässern liefern.

Mechanische und mikrostrukturelle Stabilität von additiven Zn-Bauteilen für technische und biomedizinische Anwendungen

INSPIRE: German Borehole Locations - Berlin (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: German Borehole Locations - Bavaria (GBL)

The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

Digital terrain model of the watercourse estuary Elbe 2016 (DGM-W 2016) | model data

The digital terrain model of waterways for the estuary of river Elbe (DGM-W 2016) in high resolution based on airborne laser scanning and echo sounder data is produced and published by the German Federal Waterways and Shipping Administration (Wasserstraßen- und Schifffahrtsverwaltung des Bundes, WSV). The data includes the Outer Elbe and the tidally influenced side branches of the Elbe estuary upstream to the town Geesthacht. The data is available in a raster resolution of 1 meter. Coordinate reference system: EPSG 25852, ETRS89 / UTM Zone 32N Elevation reference system: DHHN92, NHN Survey methods: Airborne laser scanning (ALS) 02. - 04.2016 Multibeam echo sounder, single beam echo sounder 2015-2017 It is strongly recommended to use the data source map for quality assessment.

Experimentelle Methoden zur Simulation von Schwachwindsituationen im urbanen Bereich

Um die Auswirkung baulicher Massnahmen auf die Durchlueftung von Innenstadtbereichen zu ermitteln, sind bei Verwendung hydraulischer Modelle spezielle Versuchstechniken erforderlich: Neben der Notwendigkeit, auch sehr geringe Stroemungsgeschwindigkeiten moeglichst stroemungsfrei auszumessen, ist die Simulation von Dichtestroemungen einschliesslich der Nachbildung von Kaltluftproduktion und Waermeabgabe durch die Baukoerper nachzubilden. Fuer die Messung von niedrigen Geschwindigkeiten kommen in Ergaenzung zu Laser- und Heissfilmanemometrie lediglich optische Methoden wie z.B. Wasserstoffblaeschenbeobachtungen in Frage. Fuer die Simulation der Dichtestroeme scheidet die prinzipiell moegliche Methode, auch im hydraulischen Modell mit Waerme zu arbeiten, aus, da wegen der Einhaltung der Aehnlichkeitsgesetze eine ca. zehnfache Temperaturspreizung erforderlich waere. Abhilfe schafft hier die Verwendung von chemischen Zusaetzen, welche nach Bedarf die Dichte des Wassers vergroessern oder verringern. Erste Erfahrungen mit rechnerisch erfassbaren Versuchsbedingungen, wie z. B. Schleusenfuellungsversuche oder Abfluss eines Dichtestromes ueber eine Schwelle zeigen ermutigende Ergebnisse fuer diese Art der Experimentiertechnik.

Laser Scanning im Dienste der Landschaftsforschung

Das Lasescanning als neues Fernerkundungsverfahren um Zeugen traditionneller Kulturlandschaften zu dokumentieren Die bereits im Rahmen des Projektes 'Wölbäcker von Rastatt' gewonnenen Erfahrungen zum Einsatz des Laser Scanning wurden auch 2007 und 2008 weiter ergänzt und vor allem in breiten Kreisen potentieller Anwender im In- und Ausland vorgestellt. Wölbäcker sind Zeugen früherer Formen des Ackerbaus, die sich als wellenartige Folge von Furchen und Scheiteln ausdrücken. Ein größeres Vorkommen solcher Reste einer mittelalterlichen Flur ist bei Rastatt unter Wald noch gut erhalten. Zur genauen Dokumentation wurde dabei erstmals das Laser Scanning eingesetzt. Mit diesem Verfahren, das auf einer flächenhaften Abtastung der Erdoberfläche von einem Flugzeug aus basiert, können Reliefunterschiede im Dezimeterbereich, selbst unter Wald aufgezeigt und vermessen werden. Die Daten stammen aus flächendeckenden Befliegungen des Landesvermessungsamtes Baden-Württemberg. Weitere Gebiete wurden auch auf das Vorkommen von Wölbäckern untersucht. So konnten dank Laser auch in der Rheinaue bzw. in Lagen wo sie nicht vermutet wurden, solche Altfluren ausfindig gemacht werden. Zu den wesentlichen Beiträgen in den beiden letzten Jahren zählt auch der erfolgreiche Abschluß des EU-Vorhabens Culture 2000 in dem wir Partner aus vielen europäischen Ländern an unseren Erfahrungen mit der Lasertechnologie teilhaben lassen konnten. Die Kooperation mit Frankreich insbesondere mit der Denkmalpflege Elsaß führte ferner zur Konkretisierung gezielter Laserprospektionen von 8 verschiedenen archäologischen Stätten in der Rheinebene und in den Vogesen, an deren Auswertungen wir ebenfalls beratend beteiligt sind.

Entwicklung der Laserionisation bei Atmosphärendruck: APLI

In einer Zusammenarbeit der Physikalischen und Theoretischen Chemie und der Analytischen Chemie der BUW ist es 2005 gelungen, neben den etablierten Atmosphärendruck-Ionisationsverfahren ESI, APCI und APPI eine vierte AP Methode einzuführen, die auf der Laserionisation basiert (Atmospheric Pressure Laser Ionization, APLI). Das Verfahren hat ein sehr großes Potential im Bereich der Ultra-Spurenanalytik in der Gas- und Flüssigphase und findet zurzeit international größere Beachtung. Mit Hilfe der APLI werden völlig neue Ansätze in der Atmosphärendruck-Massenspektrometrie möglich. Diese sollen in den kommenden Jahren mit Nachdruck verfolgt werden. Die APLI Methode verbindet die Massenspektrometrie sowohl mit den chromatographischen Methoden HPLC, CE, als auch GC. Darüber hinaus kann sie direkt an Reaktoren gekoppelt werden, die bei Atmosphärendruck operieren und ist damit optimal für den Einsatz in atmosphärisch-chemischen Untersuchungen geeignet.

Schwerpunktprogramm (SPP) 2089: Rhizosphere Spatiotemporal Organisation - a Key to Rhizosphere Functions, Teilprojekt: Hot gradients & cold spots - Räumliche Zusammenhänge zwischen C-Ausbreitung und Nährstoffimmobilisierung in der Rhizosphäre und Konsequenzen für die Pflanzenernährung

Die Verteilung von Kohlenstoff (C), die Umwandlung organischer Stoffe und die Immobilisierung von Nährstoffen folgen vermutlich bestimmten räumlichen Mustern im Wurzel-Boden-System. Gemäß dem grundliegenden Verständnis der Rhizosphärendynamik beginnt die räumliche Verteilung mit der Wurzelexsudation an der Pflanzenwurzel und führt zu allmählichen Veränderungen in der Chemie und Biologie der Rhizosphäre. In Phase 1 stellten wir die Hypothese auf, dass die Morphologie der Wurzeln und die Eigenschaften des Bodens, insbesondere seine Textur, die Verteilung von C steuern. Wir erarbeiten Mittel zur Analyse der C-Ausbreitung im Mikrometerbereich und beobachteten erhebliche Unterschiede, die überwiegend durch die Wurzelmorphologie gesteuert wurden. Wir stellten ferner die Hypothese auf, dass die Umwandlung von C durch Mikroben erfolgt, die organische Substanzen wie Polysaccharide, Phospholipidfettsäuren und Fettsäuren bilden, und konnten dies im Millimeterbereich verfolgen.Diese Ergebnisse führen nun zu folgenden neuen Hypothesen, dass i) der C-Ausbreitung durch Wurzelexsudation die Immobilisierung organisch gebundener Nährstoffe an Orten mit geringem Umsatz, sogenannten cold spots, folgt, und dass diese Stellen in bestimmten Regionen der Rhizosphäre auftreten, ii ) in Böden mit geringem Abbau der Wurzelbiomasse (wie in Phase 1 für sandigen Boden beobachtet) die Immobilisierung von Nährstoffen in der Rhizosphäre zunimmt und so mit der Pflanzenernährung konkurriert, und iii) bei Trockenheit sich die Mobilisierungsprozesse von Nährstoffen von der Bodenlösung zu Pilznetzwerken verlagert.Wir werden weiterhin Ansätze im 2D-Mikrometerbereich wie die Überwachung des Laserablations-Isotopenverhältnisses für C-Umsatzanalysen verwenden (LA-IRMS), und auf NanoSIMS für N-Verteilungsanalysen erweitern sowie SEM-EDX/WDX einbeziehen, um die Immobilisierung von Nährstoffen wie N und P über einen räumlich-stöchiometrischen Ansatz zu verfolgen. Unseren in Phase 1 etablierten Ansatz zur Probenahme im Millimeterbereich, der uns ermöglicht die organische Substanz in Rhizosphärengradienten chemisch zu charakterisieren, nutzen wir nun um immobilisierten N und P mithilfe von komponenten- oder fraktionsspezifischen d13C- und d15N-Analysen an mikrobieller Nekromasse zu analysieren (Aminozucker und organisch gebundener P). Mit diesen Hypothesen haben wir enge Anknüpfung zu den Projekten P3, P8, P13, P19, P21, P24 und P25. Wir werden einen neuen räumlichen Datensatz zur Verteilung organischer Stoffe in Rhizosphären erstellen, um die Prozesse der C-Verteilung, Nährstoffimmobilisierung und -mobilisierung unter verschiedenen externen und internen Kontrollen wie z.B. Bodeneigenschaften, Wurzelmorphologie und Dürre, zu verstehen. Diese Daten können dann in Simulations- und Modellierungsansätze implementiert werden, die ebenfalls im SPP 2089 integriert sind, so dass unser neues Wissen auch auf andere Böden und Pflanzenarten übertragen werden kann.

1 2 3 4 5135 136 137