Einrichtungen der Drogen- und Suchthilfe
Web Feature Service (WFS) zum Thema Einrichtungen der Drogen- und Suchthilfe in und um Hamburg. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Web Map Service (WMS) zum Thema Einrichtungen der Drogen- und Suchthilfe in und um Hamburg. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.
Wastewater reuse for irrigafion and artificial groundwater recharge is increasingly pracficed worldwide to improve the production of food and to alleviate water shortages. Pharmaceuticals, pathogens, and resistance determinants that are released into the environment together with the wastewater pose a potential risk to environmental and human health. Little is known, however, regarding the processes that control the disseminafion and accumulafion of wastewater-derived pharmaceuticals, pathogens, and resistance determinants in the environment. We propose to study transport, dissipation, and accumulafion of anfibiofic pharmaceuficals in different environmental compartments of the Mexico City/Mezquital Valley wastewater irrigation sytem in relation to the disseminafion of pathogens and antibiofic resistance with a consortium of environmental scientists, microbiologists, and medical scientists. The collaboration between Mexican and German scienfist in this joint project brings together the experience of the participating german scienfists in the environmental behaviour of pharmaceuficals and resistance determinants and the knowledge of the Mexican scienfists on wastewater irrigafion and soil aquifer treatment, which offers a unique chance for studying the Mexico City/Mezquital Valley case as a model to explore processes governing the magnitude of environmental and health risks emerging from wastewater reuse.
Symbiosis research is currently in the midst of a revolution as molecular techniques are leading to major breakthroughs in our understanding of interactions between animals and microbes. There is an emerging recognition that all animals are intimately associated with a complex community of beneficial microbes that are essential for their development, nutrition, and health. Thus, modern symbiosis research has become a newly emerging supra-disciplinary field with novel and innovative methods for examining microbial symbiosis, the vast majority of which remain as yet uncultivable. As so often when novel technologies open up new areas of research, training for students lags behind. We propose to close this gap by offering a comprehensive and innovative training in the microbial ecology and evolution of animal symbionts. The proposed ITN Symbiomics will include 14 leading research groups as well as 4 top-tier participants from the private sector to provide 14 early stage researchers (ESRs) and 1 experienced research (ER) with an interdisciplinary and synergistic training. Cutting edge methods in molecular biology and image analysis will be used to analyze a broad range of hosts from protozoan and invertebrate animal groups. Symbiomics will provide training through a combination of local and network-wide activities that will include research, secondments, workshops and courses including soft skills training, networking and meetings, regular thesis committee meetings, and mentoring. By pooling the scientific, technological, and entrepreneurial expertise of the Symbiomics partners, this ITN will provide a synergistic research environment and training that extends far beyond what each partner would be able to offer with local training alone. At the end of their training, the early stage researchers will have the skills they need for successful careers in academia and industry in a broad range of disciplines in the fields of environmental, applied, and medical microbiology.
Die bisher verwendeten Sterilisationsverfahren für Implantate und Medizinaltextilien im Krankenhausbereich sind aus hygienischer sowie arbeitschutz- und umweltschutzfachlicher Sicht unbefriedigend. Ziel des Projektes war die Entwicklung einer Niedrig-Temperatur-Sterilisationsmethode für Medizinaltextilien mit dem umweltfreundlichen und milden Lösemittel überkritisches Kohlendioxid (scCO2). Nosokomiale Infektionen zählen zu den häufigsten postoperativen Komplikationen und sind zumeist auf unsterile Arbeitsmittel zurückzuführen. Derzeit sind nur wenige, konventionelle Prozesse für die Sterilisation von Medizinaltextilien und Implantaten verfügbar. Diese können das Material durch Hitzebelastung oder Strahlung schädigen - wovon insbesondere moderne Biomaterialien betroffen sind. Beim Einsatz von Chemikalien (z.B. Ethylenoxid - ETO) hingegen kann es zu Einlagerungen von toxischen Substanzen kommen, die in Kontakt mit menschlichem Gewebe allergische Reaktionen, Entzündungen usw. hervorrufen können. Weiterhin stellen die Methoden, die auf den Einsatz von (Radio-) Chemikalien basieren, eine erhebliche Belastung bzw. Gefährdung für Umwelt und Betreiberpersonal dar. Zielsetzung des Fördervorhabens ist die Entwicklung eines Verfahrens zur Niedertemperatursterilisation unter Einsatz von CO2 und Ozon. Die Methode ist quasi emissions- und abfallfrei, da das CO2 recycelt und das Ozon on-site erzeugt und auch wieder vernichtet wird. Die Bereitstellung dieser innovativen Technologie wäre eine außerordentliche Verbesserung des Status quo hinsichtlich Ökologie und Arbeitssicherheit für die Sterilisation von textilen Implantaten. Im Rahmen der Entwicklung und Optimierung des Verfahrens wird die Inaktivierung verschiedener vegetativer Mikroorganismen, Sporen und Endotoxinen untersucht. Die Verschiedenheit all dieser infektiösen Partikel stellt eine anspruchsvolle Aufgabe für jedes Sterilisationsverfahren dar und wurde bisher noch nicht untersucht. Außerdem wird überprüft, ob die neue Behandlungsmethode die Eigenschaften der polymeren Implantatmaterialien negativ verändert. Auch hier besteht das Problem in der Heterogenität und Vielzahl der verfügbaren Implantatmaterialien, die in dieser Untersuchung erfasst werden müssen. Abschließend wird das Verfahren einer ökologischen und ökonomischen Bewertung unterzogen. Im Rahmen des durch die DBU geförderten Projektes wurde am DTNW ein umwelt- und materialschonendes Verfahren zur Niedrig-Temperatur-Sterilisation entwickelt und am Beispiel von teils thermolabilen Hightech-Implantaten auf Basis verschiedener (Bio-) Polymere untersucht. Diese werden von der FEG-Textiltechnik entwickelt, und immer häufiger eingesetzt, um menschliches Gewebe zu konservieren, wiederherzustellen oder um die Funktion von geschädigten Organen zu verbessern. In dem innovativen Verfahren wird hoch komprimiertes CO2 bei Drücken bis zu 100 bar mit Ozon als Additiv zur Inaktivierung von krankenhausrelevanten Keimen eingesetzt. (Text gekürzt)