This dataset contains Beryllium isotope data, pH measurements, and calculations of surface process rates (denudation, weathering, erosion) from soil and drill core samples from the Coastal Cordillera, Chile. All drilling and soil sampling campaigns were conducted in the framework of the “EarthShape” project (DFG SPP1803) from March 2019 to March 2020. Rock and soil samples consist of granitoid lithology that is weathered to different degrees.
We measured the concentration of in situ 10Be in quartz samples from soil samples and calculated denudation rates thereof. Furthermore, we applied a sequential extraction method to analyse meteoric 10Be and reactive 9Be; we also measured residual 9Be and parent bedrock 9Be concentrations. Using the concentration of meteoric 10Be, we calculated the inventory assuming exponential decrease with depth. Finally, we calculated the depositional flux using the in situ 10Be denudation rate and the 10Be(meteoric)/9Be isotope ratio. From reactive 9Be, we calculated the fraction of reactive and dissolved 9Be that we interpret as weathering indicator.
All samples are indicated with a IGSN (International Generic Sample Number) which is a global unique sample identifier. These IGSNs are provided in the data tables and are linked to a short data description in the internet.
The determination of exposure ages, erosion rates, or terrigenous fluxes into the oceans with meteoric cosmogenic 10Be or 10Be/9Be ratios requires knowledge of the depositional fluxes of this nuclide (Willenbring and von Blanckenburg, 2010). The spatial distribution of these fluxes depends on stratospheric production, solar and paleomagnetic modulation, and atmospheric restribution. To allow for the estimation of such fluxes at a given site, and to enable the GIS-based calculation of such fluxes that integrate over large spatial areas (river basins, ocean basins) we provide global maps and excel sheets interpreted to present the average Holocene 10Be fluxes and an estimate of their uncertainty as modeled by atmospheric distribution models (Heikkilä et al., 2013, Heikkilä et al., 2013, Heikkilä and Smith, 2013).