Bioturbierende Makroinvertebraten können den mikrobiellen Stickstoffkreislauf in aquatischen Sedimenten vermutlich erheblich stimulieren. Vor dem Hintergrund der hohen Belastung limnischer und brackiger Ökosysteme mit Nitrat und Ammonium kommt diesem Phänomen eine überaus wichtige ökosystemare Funktion als Senke für anorganische Stickstoffverbindungen zu. Der eigentliche Ort der stimulierten mikrobiellen Stoffumsetzungen, das Ökosystemkompartiment 'Wohnröhre' (gemeinsames Habitat von Makroinvertebraten und Mikroorganismen) ist in bisherigen Studien fast immer ausgeklammert worden, so dass keine Details über das quantitative Ausmaß der dort stattfindenden Prozesse bekannt sind. Daher soll die mikrobielle Lebensgemeinschaft der Wohnröhren bioturbierender Makroinvertebraten erstmals mit moderner Methodik auf (1) struktureller Ebene (Fluoreszuenzin-situ-Hybridisierung und Mikroautoradiografie) und (2) funktioneller Ebene (Mikrosensorentechnik) in Labor- und Freilandexperimenten untersucht werden.
The sea surface microlayer (SML) is the boundary layer on top of all oceans and is crucial for all exchange processes between the ocean and atmosphere. This less than 1 mm thick layer is heavily influenced by biological processes and events like algal blooms. To quantify the influence of an algal bloom in a controlled environment, we conducted a mesocosm study at the Sea sURface Facility (SURF) of the Institute for Chemistry and Biology of the Marine Environment (ICBM) in Wilhelmshaven, Germany (53.5148 °N, 8.1463°E). SURF is an 8.5 m long, 2 m wide and 1 m deep water basin, which can directly be filled with seawater from the Jade Bay, North Sea. The facility is equipped with a retractable roof, pumps for water circulation and dedicated mounts for multiple sensor systems. The mesocosm experiment was conducted from 18 May to 16 June 2023 as part of the project BASS (Biogeochemical processes and Air-sea exchange in the Sea-Surface microlayer). SURF was filled with seawater a few days before the start of the experiment (water depth 0.7 m). The water was then filtered and the surface skimmed to remove initial pollution. To prevent particle and microbial sedimentation during the experiment, the pumps operated at low speed to maintain gentle mixing of the water column. The roof of SURF was closed during the night, while it was open during the day except when it rained. To induce an algal bloom, a mix of nutrients (nitrogen, phosphorus and silicate) was added on 26 May, 30 May and 01 June. Based on the chlorophyll measurements which show the development of the bloom, three phases of the experiment were determined: the pre-bloom phase (18 May to 26 May), the bloom phase (27 May to 04 June) and the post-bloom phase (05 June to 16 June). Several physical, chemical and biological parameters were measured, which will be published in other datasets.
To evaluate the impact of the algal bloom within the SML, oxygen concentration, pH, and temperature were measured in situ using microsensors (UNISENSE, Denmark) mounted on a MicroProfiling System (UNISENSE, Denmark). With this setup, direct in situ measurements inside both the thermal boundary layer and diffusion boundary layer at the sea surface can be made. One oxygen microsensor, two pH microsensors and three temperature microsensors were mounted on the microprofiler with their tips pointing upward to avoid disturbance in the SML. They were positioned a few centimeters apart. The microprofiler was used to automatically move the sensors down, from the air through the SML and into the underlying water over a total distance of 10 000 µm in steps of 125 µm (250 µm at the start of the experiment). At each depth, the sensors stayed for about 10 s, giving a mean value and a standard deviation over that time. Three of these measurements were taken at every depth before the sensor moved down to the next step. After completing a profile, the microprofiler returned to its initial position with the tips in the air to start the next profile. The resulting profiles mostly took between 40 to 50 minutes. These profiles were conducted continuously during day and night, except for small breaks to clean and if needed replace or readjust the sensors and recalibrate the pH sensors. The sensors' height required manual adjustment to position the tip precisely at the water surface (0 µm). Through this manual adjustment, small inaccuracies may occur. As a result, the sensor depth readings form the microprofiler system may not reflect the true sensor position, which can also vary between the sensors. The true sensor positions can later be obtained by analysing the measured profiles.
With this project we seek three years of support for a PhD study for quantifying the hypolimnetic oxygen (O2) depletion in Lake Geneva. This project builds on results from an earlier project 'Turbulence and Fluxes in Natural Waters (200020-120128)', where we have been able to measure O2 fluxes to the sediment by applying the microprofiling and eddy-correlation techniques and to relate these fluxes to the forcing by bottom boundary layer (BBL) currents. Additionally, it is an extension of the O2 depletion model recently proposed by the Eawag team (Müller et al 2012). In this new project, we will expand the approach of water-sediment interface fluxes via applications to much larger, more complex and more strongly forced hypolimnia than have been previously studied. The choice of the field-site Lake Geneva is due to (i) the occurrence of the highest hypolimnetic O2 depletion rates measured in Switzerland, (ii) the access to a rich data-set dating back to 1957, (iii) the proximity of the sites and the availability of infrastructure, (iv) the acquired knowledge on the physical forcing of Lake Geneva and (v) the intended build-up of collaboration with Institute FA Forel and CIPEL. Besides the resources requested from SNSF, this project will be additionally supported by (i) the external senior researchers involved, (ii) a post-doc / junior researcher and (iii) the utilization of newly-acquired equipment (microprofiler, ADCPs, CTD and TDO sensors; the latter two will be financed by the new Chair in 'Physics of Aquatic Systems' at EPFL. The aim of this project is to develop a data-based model for the quantification of hypolimnetic O2 depletion in large and complex hypolimnia derived from measured and modelled fluxes from the water column through the diffusive boundary layer (DBL) to the sediment (FW-S: mineralization of organic matter at the sediment surface) and measured fluxes of reduced substances (FS-W: oxygen-equivalents) from the sediment to the water. The hypolimetic O2 consumption is then estimated by FW-S + FS-W (g O2 m-2 d-1). Local budgets will be performed in the BBL and in lake-wide layers as a function of depth (z). After a conceptual test of this model was found to be successful for a large number of vertically integrated hypolimnia (Müller et al 2012), we intend to expand upon these results by studying time series of O2 depletion as a function of z. Based on data to be obtained during a two-year period of fieldwork in Lake Geneva, we will conduct process studies quantifying the two fluxes FW-S and FS-W and use the data to calibrate this oxygen model. The hydrodynamic modelling will be used to extrapolate the effect of wind for the last 55 years. We hypothesize that this oxygen model will allow interpreting O2 depletion in most of the large lakes on earth. usw.
General Information: Two systems will be built for the autonomous measurement of trace metal concentrations in the water column and at the water-sediment interface. They are based on voltammetric microelectrode arrays, so the development of the sensor and voltammeter will be similar. VOLTAMMETRIC PROBE FOR THE WATER COLUMN, usable in the water column down to 500m, and controlled either by an operator from a ship, or automatically when attached to a buoy. The system will determine concentration profiles between 0-500 m, routinely in function of time and depth for 1-2 week and will be able to transmit the data to a land station by radio, telephone or satellite link. Cu(II), Pb(II), Cd(II) and Zn(II) will be measured with a sensitivity less than lOO pM. Extension to the analysis of Mn(II) and Fe(II) are foreseen. The probe will allow metal speciation: it determines specifically the 'truly dissolved' fraction of the trace metals (i.e. metal species smaller than ca 3 nm), directly in situ, without any sample handling thus minimizing methodological artefacts. Additional determination of the total metal concentration allows definition of the colloida) + particulate metal fraction by difference. Emphasis will be put on the development of cheap and reliable microelectrde arrays, uilt using new microtechnology. Recent developments in combining mercury film Ir based microelectrodes, in a special antifouling gel, providing high sensitivity and long-term stability of the sensor will be used. SEDIMENT-WATER INTERFACE MICROPROFILER, to determine concentration profiles of Pb(II), Cd(II) and Mn(II) (possibly also Cu(II) and Fe(II)) at the sediment-water interface, with submillimeter resolution. Microelectrode arrays with antifouling gel and with individually addressable electrodes will be used. The voltammetric probe and sensors will be placed on a lander already developed in the EUROMAR EU-408 BIMS project. Measurements down to 6000m will be stored or transmitted by cable (shallow depths) or by acoustic telemetry. The truly dissolved (i.e. the mobile) fraction of metals will be measured. A multipotentiostat and multiplexer will be combined to record the concentration profiles in 64 microelectrodes over a depth of 1 cm with a resolution of 100-200um without moving the electrode array in the sediment or a micromanipulator will be used to move the electrode array vertically. THE TWO SYSTEMS will be the first existing probe for the determination in situ of trace metal concentration in the water column and at the sediment -water interface.The tecniques to be used are feasible thanks to the well-integrated complementary expertise of the four partners. Leading Questions: in-situ measurements of tracer metals (mobile fraction) - in-situ profiling of tracer metals at the sediment/water interface.