API src

Found 271 results.

Related terms

Establishment of Teak plantations for high-value timber production in Ghana

Background and Objectives: The project area is located in the Ashanti Region of Ghana / West Africa in the transition zone of the moist semideciduous forest and tropical savannah zone. Main land use in this region is subsistence agriculture with large fallow areas. As an alternative land-use, forest plantations are under development by the Ghanaian wood processing company DuPaul Wood Treatment Ltd. Labourers from the surrounding villages are employed as permanent or casual plantation workers. Within three forest plantation projects of approximately 6,000 ha, DuPaul offers an area of 164 ha (referred to as Papasi Plantation) - which is mainly planted with Teak (Tectona grandis) - for research purposes. In return, the company expects consultations to improve the management for sustainable timber and pole production with exotic and native tree species. Results: In a first research approach, the Papasi Plantation was assessed in terms of vegetation classification, timber resources (in qualitative and quantitative terms) and soil and site conditions. A permanent sampling plot system was established to enable long-term monitoring of stand dynamics including observation of stand response to silvicultural treatments. Site conditions are ideally suited for Teak and some stands show exceptionally good growth performances. However, poor weed management and a lack of fire control and silvicultural management led to high mortality and poor growth performance of some stands, resulting in relative low overall growth averages. In a second step, a social baseline study was carried out in the surrounding villages and identified landowner conflicts between some villagers and DuPaul, which could be one reason for the fire damages. However, the study also revealed a general interest for collaboration in agroforestry on DuPaul land on both sides. Thirdly, a silvicultural management concept was elaborated and an improved integration of the rural population into DuPaul's forest plantation projects is already initiated. If landowner conflicts can be solved, the development of forest plantations can contribute significantly to the economic income of rural households while environmental benefits provide long-term opportunities for sustainable development of the region. Funding: GTZ supported PPP-Measure, Foundation

Partnerkarte der UmweltPartnerschaft Hamburg

Der Datensatz enthält die Stammdaten der aktiven Partner der UmweltPartnerschaft Hamburg. Die UmweltPartnerschaft ist die Institution zur Förderung des freiwilligen betrieblichen Umweltschutzes in Hamburg. Aktive Partner des Netzwerkes leisten freiwillig mehr für den Umwelt- und Klimaschutz als das Gesetz ihnen vorschreibt. Gemeinsam mit den Trägern unserer Initiative unterstützen wir die Unternehmen bei der Umsetzung neuer Maßnahmen in Sachen Umweltschutz. Die Partnerkarte der UmweltPartnerschaft Hamburg (Webportal) soll zur stärkeren Vernetzung der aktiven Umweltpartner und zur Präsentation der aktiven Umweltpartner gegenüber den Hamburger Bürgern/innen dienen. Für jeden aktiven Umweltpartner wird georeferenziert dargestellt: - Name des Unternehmens - Adresse (Straße, Hausnummer, PLZ, Ort) - Branche/ Wirtschaftszweig Zusätzlich wird im Webportal eine Filterfunktion mit folgenden Sortierungen angeboten: - Bezirk - Wirtschaftsfeld - Wirtschaftszweig

Human influences on forests in southern Ethiopia: the case of Shashemane-Munessa-forest

Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.

MIASAfrica Hauptphase - Maria Sibylla Merian Institute for Advanced Studies in Africa (MIASA) 'Sustainable Governance', Teilprojekt: Thematischer Schwerpunkt 'Nachhaltigkeitstransformation', Policy Outreach-Aktivitäten und Wissenstransfer

International Workshop Series: Shaping Sustainable Transformation/ Schnittstellenentwicklung für die Integration akademischer und praxisbezogener Forschung im Bereich Sozial-Ökologie

Development of an integrated forest carbon monitoring system with field sampling and remote sensing for tropical forests in Indonesia

Forests play a relevant role in mitigation of climate change. A major issue, however, is the scientifically well founded, transparent and verifyable monitoring of achievements in forest carbon sequestration through reduction of deforestation and forest degradation, and through fostering sustainable forest management. Monitoring is particularly difficult in diverse and inaccessible humid tropical forest areas. The proposed research will contribute to the improvement of forest carbon monitoring under the challenging conditions of humid tropical forests. Sample based field observations and model based biomass predictions will be linked to area-wide satellite remote sensing imagery (RapidEye) and to strip samples of LiDAR imagery. Techniques of linking these data sources will be further developed and analysed with respect to (1) precision of carbon estimation and (2) accuracy of carbon regionalization. The proposed project implies research on methodological improvements of both sample based forest inventories (resampling techniques for biomass, imputation of non-response) and remote sensing application to forest monitoring (regionalization, sample based application of LiDAR data). At the core of this research is the analysis of the error variance components that each data source brings into the system. Such error analysis will allow identifying optimal resource allocation for the efficient improvement of forest carbon monitoring systems.

EnEff:Stadt: Ganzheitlich-ressourceneffiziente Betrachtung von Stadtquartieren, Teilprojekt: Überprüfung der Übertragbarkeit entwickelter Methoden und Werkzeuge auf zwei beispielhafte Quartiere in Asperg

Sustainable Electric Architecture Casings, Teilprojekt: EMV-Betrachtung: Schirmdämpfung von hochintegrativen, recyclebaren Gehäusestrukturen mit geringem CO2 Footprint

Reallabor: NDRL - Norddeutsches Reallabor, Teilvorhaben: Volkswirtschaft, Arbeitsmarkt und Qualifizierung, HWWI

First-principles kinetic modeling for solar hydrogen production

The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.

1 2 3 4 526 27 28