s/naturpolyner/Naturpolymer/gi
Der Oberflächenfilm (SML) ist die oberste dünne Schicht des Ozeans und Teil jeglicher Wechselwirkung zwischen Luft und Meer, wie Gasaustausch, atmosphärische Deposition und Aerosolemission. Die Anreicherung von organischer Materie (OM) in der SML modifiziert die Luft-Meer-Austauschprozesse, aber welche OM-Komponenten selektiv angereichert werden, sowie warum und wann sie dies tun, ist weitgehend unbekannt (Engel et al., 2017). Unsere bisherige Forschung hat gezeigt, dass Biopolymere aus photoautotropher Produktion wichtige Komponenten der SML sind und den Luft-Meer-Austausch beeinflussen, indem sie als Biotenside (Galgani et al., 2016; Engel et al., 2018) und als Quelle primärer organischer Aerosole (Trueblood et al., 2021) wirken. Die Motivation unseres Projektes ist es daher, die dynamischen Anreicherungsprozesse von OM in der SML aufzuklären und zu beschreiben, wobei ein besonderer Schwerpunkt auf der Auflösung der OM-Quellen liegt. Mit unserem Modellierungsansatz ist es das Ziel, unser mechanistisches Verständnis der Zusammenhänge zwischen den Wachstumsbedingungen des Planktons, der Produktion und der Freisetzung von Biomolekülen, einschließlich potentieller Tenside, und der Akkumulation von OM in der SML zu konsolidieren. Eine solche Modellentwicklung wird in hohem Maße von den Ergebnissen und Erkenntnissen der verschiedenen Teilprojekte des BASS-Konsortiums profitieren. Umgekehrt ist es unsere Motivation, ein Modell zu etablieren, das als Synthesewerkzeug für die Interpretation und Integration von Feld-, Mesokosmen- und Labormessungen der OM-Anreicherung in der SML anwendbar wird.Relevanz für die Forschungsgruppe BASS - SP1.1 wird die Quellen, die Menge und die biochemische Zusammensetzung von OM in der SML entschlüsseln und damit wichtige Informationen für alle BASS-Teilprojekte liefern. Der primäre Ursprung von OM im Oberflächenozean ist die photosynthetische Produktion und die wichtigsten biochemischen Komponenten von frisch produzierter OM, d.h. Kohlenhydrate, Aminosäuren und Lipide, unterliegen der mikrobiellen Verarbeitung (SP1.2) und Photoreaktionen innerhalb der SML (SP1.3, SP1.4) und füllen auch den Pool der gelösten organischen Substanz (DOM) auf (SP1.5). Die Modellentwicklung in SP1.1 stellt eine Verbindung zwischen der Produktion von OM und ihrer Anreicherung innerhalb der SML her und zielt darauf ab, die entsprechenden Auswirkungen auf den Luft-Meer-Gasaustausch (SP2.1) zu bestimmen, indem Änderungen des Impulsflusses auf den Ozeanoberflächenschichten (SP2.2) sowie des Auftriebs (SP2.3) berücksichtigt werden. Das vorgeschlagene SML-Submodell wird auf der Grundlage der Ergebnisse aus SP1.4 und SP2.3 verfeinert. Ergebnisse aus den Modellsensitivitätsanalysen werden ergänzende Informationen über oberflächenaktive Eigenschaften verschiedener OM Komponenten und deren Auswirkungen auf Luft-Meer-Austauschprozesse liefern, die innerhalb von BASS ausgewertet werden.
Beim mikrobiellen Umsatz von organischen Verbindungen wird ein beträchtlicher Anteil des Kohlenstoffs zunächst zum Aufbau von Biomasse durch Bakterien genutzt. Diese Biomasse unterliegt nach ihrem Absterben wieder einem Abbau durch andere Mikroorganismen. In diesem Prozess werden Fragmente der abgestorbenen Zellen entweder selbst wieder zum Substrat für andere Organismen oder direkt in der Bodenmatrix festgelegt. Damit tragen sie substanziell zur Bildung der organischen Bodensubstanz (SOM) bei. Im Rahmen der geplanten Arbeiten sollen vorwiegend durch Markierungsexperimente mit stabilen und radioaktiven Isotopen die mikrobiellen Umsatzraten und die Bildung von Huminstoffen aus bakterieller Biomasse und fraktionierten Zellbestandteilen wie auch aus mikrobiellen Mineralisationsprodukten wie CO2 und NH4 in Modellböden des Schwerpunktprogrammes detailliert untersucht werden. Dazu wird die Transformation isotopisch markierter Biomassebestandteile (14C; 13C; 15N) in Bodenbioreaktoren untersucht. Die festgelegten und umgewandelten Produkte der markierten Biomasse sollen in den verschiedenen Partikel- und Huminstofffraktionen des Bodens bilanziert und mit isotopenchemischen und strukturchemischen Methoden charakterisiert werden. Damit können der stoffliche Beitrag der Biomasse an der Bildung von Huminstoffen im Boden bilanziert und Konversionsfaktoren sowie Raten für die Stoffverteilung abgeschätzt werden. Ergebnisse aus ersten Versuchen lassen zudem auf einen signifikanten Einbau von Kohlenstoff aus CO2 in die SOM schließen. Daraus könnte sich eine Neubewertung von Tracerexperimenten zur Bildung von gebundene Resten aus Xenobiotika ergeben. Im zweiten Schritt sollen Methoden zur Ermittlung der Struktur und Funktionalität der festgelegten Biopolymere entwickelt werden. Besonderes Augenmerk wird auf die Festlegung von Zellwandbestandteilen, Strukturproteinen und Nukleinsäuren gelegt.
ZIELE: - Isolierung und Charakterisierung einer bakteriellen Starterkultur; - Untersuchung der Eignung verschiedener Polymergemische; - Adaptation des Systems an Trinkwasserbedingungen; - toxikologische Pruefung des Systems; - Modifikationen des Verfahrens fuer andere Anwendungsgebiete. ERGEBNISSE: - erfolgreiche Erprobung im Labormassstab; - eine bakterielle Starterkultur wurde aus Brunnenwasser isoliert und konnte der Gattung Acidovorax zugeordnet werden; - toxikologische Unbedenklichkeit des Systems konnte anhand prokaryontischer und eukaryontischer Tests (Versuche an Ratten) nachgewiesen werden; AUFGABEN: - Bau und Betrieb einer Pilotanlage (scale up); - stabile Immobilisierung der Starterkultur am PHB/HV-Granulat; - Steigerung der Reaktorleistung durch Einsatz von Stammgemischen.
In dem vorliegenden Projekt soll untersucht werden, wie und in welchem Ausmaß landwirtschaftlich genutzte Bodenverbesserungsmittel in Form von superabsorbierenden Polymeren (SAPs) in plastikähnliche, feste Rückstände (SAP-SR) umgewandelt werden können und dabei grundlegende, physikochemische Bodeneigenschaften modulieren. Da die primären Anwendungsziele von SAPs in erster Linie der Optimierung des Wasserhaltevermögens, der hydraulischen Leitfähigkeit sowie der mechanischen Bodenstabilität dienen, wollen wir untersuchen und verstehen, wie die Alterung bzw. potenzielle Umwandlung von SAPs in SAP-SR diese Eigenschaften und Prozesse nachhaltig verändern. Somit ließe sich nachvollziehen und klären, ob der ursprüngliche Zweck von SAPs und ihre typischerweise angeführten Vorteile trotz ihrer Alterung oder Umwandlung weiterhin erhalten bleiben, dauerhaft reduziert oder sogar ins Negative umgekehrt werden. Zur Beantwortung dieser Fragen werden gezielte Experimente zum Abbau- und Umwandlungspotenzial verschiedener, gängiger synthetischer SAPs unter verschiedenen Inkubationsbedingungen und in unterschiedlichen Böden durchgeführt. Gleichzeitig werden die damit einhergehenden Änderungen grundlegender physikochemischer Bodeneigenschaften erfasst und mit relevanten Abbau- und Umwandlungsprozessen der SAPs verknüpft. Das notwendige Wissen und die geeigneten Techniken werden aus früheren und derzeit laufenden Projekten gewonnen, die sich mit dem Beitrag von synthetischen und Biopolymeren auf die Bodeneigenschaften und -funktionen beschäftigen. Im Rahmen des Projekts werden wir bereits etablierte Methoden wie ein- (1D-), zwei- (2D-) dimensionale und Feldgradienten- (PFG-) 1H NMR-Relaxometrie, Rheometrie, Dynamische Differenzkalorimetrie (DSC), Pyrolyse-GC-MS (Pyr-GC-MS) und verschiedene bildgebende Verfahren (Elektronenmikroskopie (ESEM) und Röntgen-Mikrotomographie (µCT)) anwenden. Sobald geklärt wurde, wie und unter welchen Bedingungen SAP-SR-Strukturen gebildet und welche ihrer ursprünglichen physikochemischen Eigenschaften grundlegend geändert werden, sollen die damit einhergenden Auswirkungen auf das Pflanzenwachstum und die Rhizosphären-Dynamik in kontrollierten Gewächshausexperimenten qualitativ und quantitativ erfasst werden. Die Ergebnisse des Projekts werden somit Aussagen über das langfristige Verhalten, den Verbleib und die Wirksamkeit von SAPs auf der Grundlage veränderter Bodenprozesse und bodenphysikochemischer Eigenschaften ermöglichen.
Die traceless materials GmbH ist ein Bioökonomie Start-up Unternehmen, das im Jahr 2020 als Ausgründung der TU Hamburg hervorgegangen ist. Das Hauptgeschäftsfeld stellt die Entwicklung und Produktion des traceless Materials (rückstandslos biologisch abbaubares Material) für den Kunststoffverarbeitungsmarkt dar. Erklärtes Ziel ist, einen messbaren Beitrag zur Lösung der weltweiten Verschmutzung durch Kunststoffe zu leisten. Die traceless materials GmbH stellt mittels eines innovativen Verfahrens ein Material her, welches vergleichbare Eigenschaften wie Kunststoff besitzt. Es handelt sich dabei aber um eine neuartige Materialkategorie. Konventioneller Kunststoff wird in einem synthetischen Verfahren und zum Großteil aus fossilen Rohstoffen hergestellt. Der Rohstoff in diesem Projekt hingegen sind pflanzliche Reststoffe, welche nach der Extraktion der natürlichen Polymere noch als Futtermittel oder zur energetischen Verwertung genutzt werden können. Im Vorhaben soll eine Demonstrationsanlage mit einer Kapazität von mehreren Tausend Tonnen pro Jahr errichtet und betrieben werden. Im Herstellungsprozess des traceless Materials wird als Rohstoff ein pflanzlicher Reststoff verwendet, der als Nebenprodukt der industriellen Getreideverarbeitung anfällt. Mit einem zum Patent angemeldeten Verfahren werden daraus natürliche Polymere extrahiert und zu einem Granulat verarbeitet. Dieses Granulat kann mit gängigen Technologien der Kunststoffverarbeitung zu verschiedenen Produktanwendungen weiterverarbeitet werden, beispielsweise im Spritzguss oder der Extrusion. Das hergestellte Material könnte z.B. zur Herstellung von Einwegverpackungen und -produkten, welche leicht in die Umwelt gelangen oder sich nicht recyceln lassen, eingesetzt werden und so zur Verbrauchsminderung fossiler Rohstoffe beitragen. Damit soll auch die Umweltverschmutzung zurückgehen, da das Material sich rückstandslos abbaut und nicht schädlich für Flora und Fauna ist, wenn es unsachgemäß in der Umwelt entsorgt werden sollte. Produkte, die aus dem Material hergestellt werden, sind entweder über den Restmüll oder bei Verpackungen über den gelben Sack/die gelbe Tonne/Wertstofftonne zu entsorgen. In beiden Fällen werden sie energetisch verwertet, da der Marktanteil für eine sortenreine Sammlung und mechanisches Recycling derzeit zu gering ist. Eine Entsorgung über die Bioabfallsammlung ist nicht zulässig, auch wenn das Material zertifiziert gartenkompostierbar ist. Bei einer Kompostierung würde auch der energetische Nutzen verloren gehen. Bei einer jährlichen Produktionskapazität von mehreren Tausend Tonnen können nicht nur substantiell CO 2 -Emissionen und fossile Energieträger, sondern auch Wasser und Landressourcen eingespart werden. Das Verfahren ist für eine Vielzahl von Unternehmen der Chemie- und Kunststoffindustrie übertragbar. Da das Material auf den gängigen Anlagen der kunststoffverarbeitenden Industrie eingesetzt werden kann, ist eine Übertragbarkeit ohne (hohen) Aufwand möglich. Weiterhin wird an der Übertragbarkeit dieses Verfahrens der Polymerextraktion auf andere Reststoffe von Getreide geforscht. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: traceless materials GmbH Bundesland: Hamburg Laufzeit: seit 2023 Status: Laufend
| Origin | Count |
|---|---|
| Bund | 656 |
| Type | Count |
|---|---|
| Förderprogramm | 654 |
| Text | 2 |
| License | Count |
|---|---|
| geschlossen | 3 |
| offen | 653 |
| Language | Count |
|---|---|
| Deutsch | 632 |
| Englisch | 69 |
| Resource type | Count |
|---|---|
| Keine | 377 |
| Webseite | 279 |
| Topic | Count |
|---|---|
| Boden | 503 |
| Lebewesen und Lebensräume | 412 |
| Luft | 244 |
| Mensch und Umwelt | 656 |
| Wasser | 165 |
| Weitere | 621 |