Fuer zukuenftige Druckwasserreaktoren werden derzeit Kernfaengerkonzepte als Massnahme zur Beherrschung auslegungsueberschreitender Stoerfaelle mit Niederschmelzen des Kerns entwickelt. Zu ihrer Ueberpruefung wird der Prozess der Schmelzeausbreitung in einer Vielzahl von Experimenten untersucht. Fuer eine Uebertragung dieser Experimente auf Anlagenbedingungen ist die Entwicklung von Computerprogrammen sinnvoll und notwendig. Der Code MECO beschreibt das Ausbreitungs- und Abkuehlverhalten heisser Schmelzen ueber horizontal, geneigt und vertikal orientierte Ausbreitungszonen. Basierend auf den Navier-Stokes'schen Bewegungsgleichungen sowie der Energiegleichung fuer ein zZt 2-dimensionales Berechnungsgebiet erfolgt die numerische Simulation durch Kopplung des SOLA-Algorithmus (Finite-Differenzen-Verfahren) mit der 'Marker-And-Cell'-Methode. Waehrend der Ausbreitung der Schmelze werden Erstarrungsprozesse infolge verschiedener Waermeabfuhrmechanismen beruecksichtigt. Eine erste Validierung des Codes erfolgte anhand der Nachrechnung von Experimenten der KATS-Versuchsreihe des Forschungszentrums Karlsruhe sowie der COMAS-Versuche der Giesserei Siempelkamp, Krefeld.
Fuer zahlreiche Fragestellungen im Zusammenhang mit der Deponierung von Abfaellen, der Altlastensanierung, der Grundwassergewinnung und der Nutzung geothermischer Energie sind Modelluntersuchungen im Kluftgestein durchzufuehren. Dabei sind einerseits geringleitende Formationen fuer die Deponierung von Interesse, die eine wirksame geologische Barriere zur Isolierung von Schadstoffen bilden, andererseits geht es um die Bewirtschaftung von Aquiferen zur Grund- und Thermalwassergewinnung. Die Simulation von Stroemungs- und Transportprozessen in klueftig-poroesen Grundwasserleitern und Grundwassergeringleitern stellt spezifische Anforderungen an die modelltechnische Umsetzung, die aus der signifikanten Inhomogenitaet des klueftigen Untergrunds erwachsen. Zur numerischen Simulation solcher Vorgaenge ist das Finite-Elemente-Programmsystem ROCKFLOW entwickelt worden. Das Programm besteht aus einer Reihe von FE-Rechnenkernen (Kernels), welche die prozessspezifischen Differentialgleichungen mittels Galerkin-FEM approximieren. Diese Rechenkerne sind miteinander verknuepfbar (Models), so dass gekoppelte Prozesse (z.B. Tracertransport durch eine Gasstroemung) simuliert werden koennen. Physikalische Prozesse: Folgende physikalische Prozesse sind modellierbar: - Grundwasserstroemung (Sicker- und Kluftstroemung) - Gasstroemung (kompressible Fluide) - Mehrphasenstroemungen (Systeme aus in- und kompressiblen Fluiden) - nicht- (Forchheimer) und liniare Fliessgesetze (Darcy) - hydrodynamische Dispersion (Scheidegger-Ansatz) - Zerfallreaktionen - nicht- (Freundlich, Langmuir) und lineare Gleichgewichtssorption (Henry) - Dichtestroemungen. Numerik: ROCKFLOW ist ein Finite-Elemente-Simulator, wobei verschieden-dimensionale isoparametrische Elemente beliebig im Raum koppelbar sind. Auf der Basis der Methode der gewichteten Residuen wird eine zur prozessbeschreibenden Differentialgleichung aequivalente sog. 'schwache' Integralformulierung abgeleitet. Es stehen verschiedene Loeser zur Verfuegung (Gauss, BiCGSTAB, QMRCGSTAB), um die resultierenden albebraischen Gleichungssysteme zu loesen. Nichtlineare Probleme werden mit Picard- oder Newton-Verfahren behandelt. Gitteradaption: Ab der dritten Version stehen Methoden fuer eine problemangepasste Gitteradaption zur Verguegung. Der Algorithmus zur Gitteradaption basiert auf einem hierarischen Konzept zur Verfeinerung und Vergroeberung gekoppelter verschieden-dimensionaler Elemente. Diskretisierungsfehler koennen entweder mit heuristischen Indikatoren oder einem analytischem Estimator lokalisiert und quantifiziert werden.
Entwicklung von Modellansaetzen zur Berechnung partiell vorgemischter turbulenter Verbrennung in nichtvorgemischten Systemen. Direkte numerische Simulation mit aufgeloesten numerischen Skalen - Loesung der Navier-Stokesschen Gleichungen - Verwendung von Ein-Schritt- oder Mehr-Schritt-Modellen fuer die chemische Kinetik. Verbrennungsmodellierung mit dem Flameletkonzept fuer Diffusionsvormischflammen in Verbindung mit direkter numerischer Simulation der Turbulenz und bei Verwendung von Turbulenzmodellen.
Ausgangspunkt der Arbeiten ist die Ueberlegung, dass die Wirksamkeit eines Aquifervolumens zum Schadstoffabbau oder zur Schadstofffestlegung sich im Zusammenwirken zwischen advektiv-diffusiven Transportprozessen, chemischen Prozessen und den heterogenen Verteilungen von Durchlaessigkeit und chemischen Eigenschaften des Mediums ergibt. Fuer die Abbaugeschwindigkeit eines Stoffes ist beispielsweise nicht nur die prinzipielle Abbaubarkeit, sondern auch die Zugaenglichkeit von Reaktionszentren oder die Versorgung mit Reaktionspartnern wichtig. Vordringlich fuer Fortschritte in der Prognostizierbarkeit des Transports von beliebigen Stoffen in Aquiferen sind Beitraege zu folgenden Themen: - Definition von effektiven Parametern (effektive Kapazitaeten oder effektive kinetische Parameter) - Skalen gesetzt fuer effektive Parameter oder Uebergang zu neuen Gesetzen auf jeder Skalenebene - Sensitivitaet des makroskopischen Transports gegenueber Prozessen und den Details des Prozessverlaufs im Porenmassstab.
Fuer zukuenftige Druckwasserreaktoren werden derzeit Kernfaengerkonzepte als eine Massnahme zur Beherrschung auslegungsueberschreitender Stoerfaelle mit Niederschmelzen des Kerns entwickelt. So ist fuer den EPR ('European Pressurized Water Reactor') ein Konzept ('EPR-Core Catcher') vorgesehen, in dem die Schmelze sich auf einer grossen Flaeche ausbreiten kann, um dann geflutet zu werden. Ziel ist es, mit einem grossen Verhaeltnis von Oberflaeche zu Volumen der Schmelze eine ausreichende Kuehlung sicherzustellen. Aus Kosten- und Sicherheitsgruenden ist es zur weitgehenden Abdeckung moeglicher Stoerfallszenarien sinnvoll, umfassende experimentelle Versuchsreihen durch Simulationsprogramme zu ergaenzen, die ein sehr wichtiges Instrumentarium zur detaillierten Analyse von Stoerfallszenarien unter spezifischen Bedingungen darstellen. Im Rahmen dieses Projektes wird in Anlehnung an das EPR-Konzept ein Modell zur Beschreibung des Ausbreitungs- und Abkuehlungsverhaltens von Schmelze entwickelt. Insbesondere beinhaltet dies eine Modellierung des dynamischen wie auch thermischen Verhaltens auslaufender Schmelze unter Beruecksichtigung der fuer den Spaltprodukttransport wesentlichen Prozesse.
Granulat- und Schuttströme führen in vielen Gebirgsregionen weltweit regelmäßig zu Zerstörungen. Schneelawinen, Fels- oder Fels-Eis-Lawinen, Muren, Lahare oder pyroklastische Ströme sind nur einige Beispiele für derartige Prozesse. Ein angemessener Umgang mit den damit verbundenen Risiken erfordert eine detaillierte und zuverlässige Analyse der diesen Phänomenen zu Grunde liegenden Mechanismen. Zwar wurde dieses Thema in der Vergangenheit schon ausführlich bearbeitet und existiert eine Reihe einschlägiger physikalisch basierter Modelle, jedoch bleiben bis dato einige Probleme ungelöst: (1) das Fließen über natürliches (beliebig geformtes) Gelände und der Einfluss des viskosen Porenfluids bzw. die Modellierung der Bewegung als Zweiphasenströmung, sowie die Aufnahme von festem und/oder flüssigem Material wurden bisher nicht angemessen behandelt; (2) es existiert zum gegenwärtigen Zeitpunkt keine benutzerfreundliche, frei verfügbare Software, die zur Simulation solcher Phänomene in ihrer vollen Komplexität geeignet ist. Eine derartige Software könnte jedoch entscheidend dazu beitragen, die Modelle für einen breiteren Anwenderkreis an Universitäten und im öffentlichen Dienst zugänglich zu machen. Das vorliegende Projekt zeigt einen effektiven, innovativen und vereinheitlichten Weg für die Lösung dieser beiden Probleme auf. Er beschäftigt sich deshalb mit schnellen geophysikalischen Massenbewegungen wie Lawinen und echten zweiphasigen Schuttströmen von einem genau definierten Anrissgebiet entlang des Fließweges über natürliches Gebirgsgelände bis zum Ablagerungsgebiet. Für eine in ihrem Volumen und in ihrer Verteilung definierte Masse im Anrissgebiet sollen die Bewegung und die geometrische Deformation entlang des beliebig geformten Fließweges simuliert werden. Diese Simulation soll die Aufnahme und Ablagerung von festem Material einerseits und Fluiden andererseits entlang des Fließweges sowie die endgültige Verteilung der abgelagerten Masse einschließen. Die Modellierung wird ebenfalls die Effekte des sich dynamisch entwickelnden Porenfluiddrucks und/oder der zeitlichen Entwicklung der Mischungsverhältnisse der Feststoffe und Fluide inkludieren. Ein ebenso wichtiger Schwerpunkt soll auf die Entwicklung einer benutzerfreundlichen und frei verfügbaren Anwendungssoftware des entwickelten Modells gelegt werden. Dafür soll die GIS Software GRASS genutzt werden, die als Open Source Produkt unter der GNU General Public License verfügbar ist. Die neue Software soll mit physikalischen Modellen (Laborversuchen) sowie mit gut dokumentierten Massenbewegungen evaluiert werden. Hierbei sollen verschiedenste durch das Modell abbildbare Prozesse und Prozessketten wie Muren bzw. Schuttströme, Schuttlawinen und Schnee- oder Felslawinen betrachtet werden.
EURAD (Europaeisches Ausbreitungs- und Depositionsmodell) ist ein Modellsystem, das fuer die Behandlung der Ausbreitung anthropogener Schadstoffe in Europa und Teilgebieten davon entwickelt wurde. Es wird auf Regionen unterschiedlicher Groesse (Kontinent, Staaten, Bundeslaender, Stadtgebiete) angewendet. Das Modellsystem wurde vor allem fuer die Behandlung von Smogepisoden, aber auch fuer die Untersuchung der Ausbreitung radioaktiver Wolken und der Wirkung von Flugzeugemissionen eingesetzt. Dabei wurde es umfangreich evaluiert. Mit ihm ist die chemische Wirkung von Aerosolen sowie der Einfluss von Wolken und Nebel behandelt worden. Seine Anwendungsbreite und Flexibilitaet ermoeglicht den Einsatz unter vielfaeltigen Bedingungen. Es wird auch in Zukunft in anwendungsorientierten und wissenschaftlichen Projekten eingesetzt werden.
Die wirtschaftliche Auslegung und ein energetisch optimaler Betrieb von TGA-Anlagen fuer solaroptimierte Gebaeude, NEH sowie Atrien erfordern voellig neue Herangehensweisen. Ein wichtiges Instrument stellt die gekoppelte Simulation der Bausteine Gebaeude, Anlage, Raumluft- und Gebaeudedurchstroemung dar. Die Kopplung erfolgt derzeit ueber die Oberflaechen der einzelnen Tools. Als Folge ist insbesondere die beschraenkte Aussagekraft der Ergebnisse zu nennen. Das Ziel des Vorhabens besteht folgerichtig in einer mathematischen Kopplung der og Tools (einschliesslich Quelltexteingriffe), um zeitlich stark veraenderliche Randbedingungen (Aussenlufttemperatur, Sonnenstrahlung, Wind, Anlagenparameter, Nutzerverhalten) beruecksichtigen zu koennen. Das Vorhaben soll neben den angestrebten Ergebnissen auch eine wichtige Grundlage fuer die integrale Planung darstellen.
In hydraulischen Berechnungen von Flusslaeufen oder im Kanalnetz wird meist auf eine eindimensionale Betrachtungsweise zurueckgegriffen. Oft stellen sich aber Probleme, bei denen der mehrdimensionale Charakter einer Stroemung von entscheidender Bedeutung ist. Ziel des Forschungsvorhabens ist es, unter Ausnutzung der Besonderheiten von Stroemungen mit freier Oberflaeche eine Berechnungsmethode aufzuzeigen, mit der praxisrelevante Probleme mit vernuenftigem Rechenaufwand zu loesen sind. So koennen beispielsweise mit Hilfe mehrdimensionaler Berechnungen die Genauigkeit erhoeht, der Wirkungsgrad von Wasserkraftanlagen durch eine Optimierung der Zu- und Ablaufbedingungen verbessert, Wechselwirkungen zwischen Bauwerken und Stroemung bestimmt oder das Gefaehrdungspotential von Hochwasserereignissen in Fluss-Vorlandsystemen besser beurteilt werden. Das betrachtete Stroemungsgebiet wird mit raeumlichen finiten Elementen diskretisiert. Zur Beschreibung des Fliessvorganges kommen die Navier-Stokes-Gleichungen ergaenzt durch ein Turbulenzmodell zur Anwendung. Im Gegensatz zur Beschreibung von Stroemungen mit den Flachwassergleichungen kann so auf die Annahme einer hydrostatischen Druckverteilung verzichtet werden.
Das Konzept der Kapillarsperre ist eine vielversprechende Alternative zu herkoemmlichen Oberflaechenabdichtungen von Deponien und Altlasten. Versuche am Institut fuer Wasserbau und Wasserwirtschaft haben die grundsaetzliche Eignung der Kapillarsperre unter Laborbedingungen nachgewiesen. Mit dem Bau grossmassstaeblicher Probefelder mit Kapillarsperrensystemen auf den o.g. Deponien wurde die bautechnische Herstellbarkeit belegt. Die Versuchseinrichtungen gestalten eine vollstaendige Bilanzierung des Wasserhaushaltes der Dichtungssysteme und ermoeglichen, das Langzeitverhalten unter natuerlichen klimatischen Bedingungen naeher zu untersuchen.
Origin | Count |
---|---|
Bund | 22 |
Type | Count |
---|---|
Förderprogramm | 22 |
License | Count |
---|---|
offen | 22 |
Language | Count |
---|---|
Deutsch | 22 |
Englisch | 6 |
Resource type | Count |
---|---|
Keine | 19 |
Webseite | 3 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen und Lebensräume | 14 |
Luft | 13 |
Mensch und Umwelt | 22 |
Wasser | 14 |
Weitere | 22 |