API src

Found 3 results.

High-Resolution Orthomosaics and Digital Elevation Models of Biogenic Structures in the German Wadden Sea

This dataset contains high-resolution (5 cm/pixel) orthomosaics and digital elevation models (DEMs) from unoccupied aerial vehicle (UAV) surveys of biogenic structures in the German Wadden Sea. Two Pacific oyster reefs (Kaiserbalje, Nordland) and one blue mussel bed (Nordstrand) were monitored between 2020 and 2022. The data, processed via structure from motion (SfM) and georeferenced, are provided as raster files (*.tiff), ready for GIS analysis. The Random Forest (RF) classification shapefiles support the mapping of biogenic structures. This dataset facilitates research on biogenic structure growth, sediment dynamics, and geomorphological processes in intertidal environments

UAV-Photogrammetry, UAV laser scanning and terrestrial laser scanning point clouds of the inland dune in Sandhausen, Baden-Württemberg, Germany

This dataset contains unoccupied aerial vehicle (UAV)-based photogrammetric point clouds, orthophotos, UAV-borne laser scanning point clouds, and terrestrial laser scanning point clouds of three nature reserves of the Sandhausen inland dunes in Baden-Württemberg, Germany: Pflege Schönau, Pferdstrieb Süd, and Zugmantel-Bandholz. The three surveyed areas each have a size of about 10 ha. UAV-based photogrammetric data of the three sites were collected in February, September, and October 2021 with a ground sampling distance of 2.0 to 2.5 cm/px. UAV-borne laser scanning data were collected in August and September 2021 and resulting point clouds have pulse densities between 123 and 227 pts/m². Additionally, the site Zugmantel-Bandholz was surveyed with a terrestrial laser scanner in May 2022 using eight scan positions. GNSS measurements were recorded in-flight and/or taken on the ground and were tied into the SAPOS reference network (RTK/PPK) to georeference the data. This dataset captures the current state of the inland dune in 2021 and 2022, in particular the topography and vegetation cover in different seasons of the year.

Drone based photogrammetry data at the Geysir geothermal field, Iceland

Geysers are localized hydrothermal vents that periodically erupt with gas bubbles at the surface. Understanding their distribution, dynamics, and conduit geometry is critical to understand the fluid and heat transfer through the crust. To explore this at the Geysir geothermal field in Iceland, we analyzed the spatial distribution of thermal features using high-resolution UAV-based optical and infrared cameras. Based on this, Walter et al. (2020) identified 364 distinct thermal spots. Here we release the high-resolution drone orthomosaic dataset at the Geysir geothermal field, Iceland.

1