API src

Found 978 results.

Similar terms

s/phytoplancton/phytoplankton/gi

Vorhersage der Stabilität von Lebensgemeinschaften aus dem Beitrag einzelner Arten zu Resistenz, Resilienz und Erholung

Ökologische Stabilität ist der Schlüssel zur Vorhersage der Folgen von Umweltveränderungen, denn sie umfasst Aspekte der Antwort auf verschiedene Störungsszenarien, zum Beispiel die Fähigkeit, Veränderungen zu widerstehen, diese zu absorbieren oder sich von ihnen zu erholen. Die wichtigsten Fortschritte bei der wissenschaftlichen Bewertung der ökologischen Stabilität in jüngster Zeit ergaben sich aus i) der Anerkennung der mehrdimensionalen Natur der Stabilität, ii) der Unterscheidung zwischen der Stabilität funktioneller Eigenschaften eines Ökosystems und der Stabilität der Zusammensetzung der Gemeinschaft und iii) der Erkenntnis der Bedeutung der räumlichen Dynamik für das Verständnis der lokalen Stabilitätseigenschaften. Trotz dieser Fortschritte wird unser Verständnis der Stabilität (und ihrer Verwendung in den Ökologie- und Umweltwissenschaften) immer noch durch unsere Unfähigkeit behindert, die Stabilität der Gemeinschaft anhand artspezifischer Leistungen und Merkmale vorherzusagen. Das Verständnis der Beiträge der Arten zur Stabilität ist das Hauptziel dieses Projektantrages. Wir werden Metriken verfeinern und testen, die die Reaktionen der Arten auf sich ändernde Umgebungen erfassen, und diese Metriken verwenden, um die Stabilität von Lebensgemeinschaften anhand der Leistung einzelner Arten vorherzusagen und die vorhergesagte Stabilität mit der beobachteten zu vergleichen. Die Arbeit ist in vier Arbeitspakete unterteilt, die Simulationen und Datenanalyse (WP 1) kombinieren mit drei experimentellen Arbeitspaketen zunehmender Komplexität (WP2-4). Die Metaanalyse in WP 1 verwendet kürzlich entwickelte Methoden zur Zerlegung von Stabilität, um Arten zu identifizieren, die zur Stabilität oder Verwundbarkeit in verschiedenen Arten von Ökosystemen und Organismen beitragen. Für die Experimente werden marine Planktongemeinschaften unterschiedlichen Trends und Temperaturschwankungen ausgesetzt sein. Diese Experimente werden von einem Bottom-up-Ansatz ausgehen, bei dem Arten mit bekannten Reaktionen zu Artenpaaren und Zusammenstellungen mit geringer Diversität kombiniert werden, wobei die erwartete mit der beobachteten Stabilität verglichen wird (WP 2). In WP 3 werden wir mithilfe eines Metacommunity-Setups testen, wie die Vorhersagbarkeit von Stabilitätsaspekten wie Resistenz, Resilienz, Erholungsfähigkeit und zeitliche Stabilität von der Konnektivität im Raum abhängt. Schließlich werden wir Mesokosmen verwenden, um zu testen, ob dieselben Merkmale die Stabilität der Phytoplanktongemeinschaft in Abwesenheit oder Gegenwart eines generalistischen Zooplankton-Verbrauchers beeinflussen.

Saisonale Sensitivität von Ökosystemfunktionen in einer sich erwärmenden Arktis (Svalbard, Leitantrag; Vorhaben: Physiologische Plastizität und Ökosystemfunktionen des arktischen Phytoplanktons

Funktionelle Diversität aquatischer Primärproduzenten - Erarbeitung einer Konzeption für einer DFG-Forschergruppe

Im Rahmen eines Verbundvorhabens mit der BTU Cottbus, Universität Potsdam und dem IGB Berlin soll eine Forschergruppe zur Untersuchung der funktionellen Diversität aquatischer Primärproduzenten initiiert werden. Dieses Vorhaben soll eine detaillierte Analyse sowohl der räumlichen Inhomogenitäten als auch der zeitlichen Variabilität der Primärproduktionsleistung aquatischer Ökosysteme liefern. Die dem Vorhaben zugrunde liegende Hypothese geht davon aus, dass mit steigender Nährstoffbelastung eine Zunahme beider Variabilitätskomponenten erfolgt, welche durch die gegenwärtig praktizierte Probenahmestrategie nur unzureichend erfasst wird. In bisherigen gewässerökologischen Studien wird im Regelfall nicht die Leistung der Primärproduzenten erfasst, sondern nur ihre Biomasse als Proximatfaktor verwendet. In allen Klassifikations- und Bewertungssystemen wird ungeprüft vorausgesetzt, dass die Trophie als Intensität der Primärproduktion im gesamten Gewässer proportional zur Nährstoffbelastung und zur Biomasse des Phytoplanktons im Epilimnion ist. Dieser Sachverhalt trifft jedoch nur auf die Phasen der Dominanz von epilimnischem Phytoplankton zu. Mit der Abnahme der Nährstoffbelastung wächst die Bedeutung benthischer oder metalimnischer Produzenten für die gesamten Stoffumsatzprozesse und für die Ausprägung von Nahrungsnetzbeziehungen. Diese Prozesse und Komponenten sollen in einem Gesamtansatz erfasst werden. Aus diesem Grund steht die Entwicklung von vergleichbaren Methoden zur Erfassung der Primärproduktion aller photoautotrophen Organismen im Mittelpunkt der ersten Phase des Forschungsvorhabens

Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Alternative Zustände eines einfachen Räuber-Beute Systems induziert durch Konkurrenz zwischen kleinen fressbaren und großen nicht fressbaren Algen und parasitische Pilze (APPS)

Höhere Abundanz von Zooplankton führt häufig zu einer Verschiebung der Algengemeinschaft hin zu größeren nicht fressbaren Algen, was zu einer Limitation des Nährstoffflusses entlang der Nahrungskette führt. Im Gegenzug können parasitische Pilze (z.B. Chytridien) große schlecht fressbare Algen infizieren und so für das Zooplankton (z.B. Mikro- und Makrozooplankton) in Form von Zoosporen verfügbar machen. Dieser sogenannte 'Mycoloop' hat wichtige Konsequenzen für die verschiedensten Nahrungsnetzinteraktionen. In Abwesenheit einer Kopplung zwischen Pilzen und Zooplanktonfraß, sind parasitische Pilze in der Lage große nicht fressbare Algen stark zu reduzieren und somit kleine fressbare Algen zu fördern. Allerdings existiert eine starke Kopplung durch Zooplanktonfraß zwischen den Pilzen und dem Zooplankton (über die Zoosporen), dies kann das Wachstum der nicht fressbaren Algen sogar fördern und zwar durch eine reduzierte Infektionsrate. Genetische Varianz (trait variability) innerhalb der nicht fressbaren Algenpopulation, kann eine Verschiebung zu resistenteren Genotypen ermöglichen und somit die direkte Kontrolle durch parasitische Pilze reduzieren, sowie die Kopplung durch Zooplanktonfraß zwischen Pilzen und Zooplankton schwächen. Unser Ziel ist es daher, die Variabilität in den Eigenschaften mit dem Zooplanktonfraß und dem Pilzparasitismus zu verbinden, um Räuber-Beute/Parasit-Wirt Beziehungen und die Konkurrenz zwischen fressbarem und nicht-fressbarem Phytoplankton in Anwesenheit von Pilzparasitismus oder Zooplankton Fraßdruck und in Kombination zu untersuchen. Unsere Hypothese ist, dass der Pilzparasitismus das Potential besitzt, unser Modellsystem in alternative Zustände mit einer Dominanz von entweder fressbarem oder nicht-fressbarem Phytoplankton zu verschieben, in Abhängigkeit von der Stärke der Pilz-Zooplankton-Kopplung. Mit Hilfe von Experimenten möchten wir die Auswirkungen von Parasitismus und des Mycoloop auf die Nahrungsnetzdynamik untersuchen. Wir erwarten, dass alternative Zustände des Nahrungsnetzes auftreten: entweder die Dominanz von fressbaren Algen oder nichtfressbaren Algen. Theoretische Untersuchungen mit Hilfe eines entsprechenden Nahrungsnetzmodelles werden uns Einsichten geben, wie die unterschiedlichen Treiber und Nahrungsnetzinteraktionen die Konkurrenzstärke zwischen kleinen, fressbaren und großen, nicht-fressbaren Algen beeinflusst. In der Kombination erlaubt uns dies, zu bestimmen, wie der Pilzparasitismus die Nahrungsnetzdynamik und damit seine Implikationen für Phytoplankton Diversität und Funktionalität verändern.

Die Evolution von Parasitismus in phytoplanktoninfizierenden Flagellatenpilzen

Flagellatenpilze (Chytridiomycota) sind eine Gruppe evolutiv früh abzweigender, zoosporischer Pilze, die in verschiedensten aquatischen und terrestrischen Lebensräumen vorkommen. Sie leben entweder als Saprophyten, Parasiten oder als intermediäre Formen. Bei allen Formen haften sich freischwimmende Zoosporen an Detritus oder einen Wirt und extrahieren Nährstoffe unter Bildung eines Sporangiums, welches neue Zoosporen hervorbringt. Aufgrund ihrer geringen Größe und unscheinbaren morphologischen Merkmalen blieben die Zoosporen in Untersuchungen mariner und limnischer Planktongemeinschaften für viele Jahrzehnte nahezu unentdeckt. Molekularbasierende Methoden jüngster Zeiten haben jedoch eine hohe Abundanz sowie Diversität der Flagellatenpilze in aquatischen Lebensräumen aufgedeckt. Einige Arten infizieren Phytoplankton, wie z.B. Blaualgen, Kieselalgen und Dinoflagellaten, so dass ihnen eine wichtige Rolle in der Kontrolle von Algenblüten zugeschrieben wird. Überraschenderweise ist der trophische Lebensstil nur für wenige kultivierte Arten beschrieben und die genomischen Innovationen, welche sich auf Infektionsstrategien der Phytoplanktonparasiten zurückführen lassen, sind völlig unbekannt, so dass eine Beurteilung der Ernährungsweise der Flagellatenpilze anhand (meta)genomische eDNA-untersuchende Umweltstudien nahezu unmöglich ist. Die phylogenetischen Beziehungen innerhalb der Flagellatenpilze, welche Informationen zu den Ursprüngen und der Verbreitung von Parasitismus innerhalb ökologisch verschiedener Entwicklungslinien liefern könnten, sind weitestgehend ungeklärt. In diesem Projekt möchte ich die molekularen Voraussetzungen für einen parasitischen Lebensstil in phytoplanktoninfizierenden Flagellatenpilzen aufdecken. Vergleichende Genomanalysen von vier phytoplanktoninfizierenden Flagellatenpilzarten mit nahe verwandten saprophytischen Arten sollen neue Erkenntnisse über die parasitismus-typischen genetischen 'Werkzeuge' erbringen (z.B. über parasitenspezifische Virulenzgene). Darüber hinaus plane ich einen stabilen phylogenetischen Baum für circa 40 Flagellatenpilzarten zu rekonstruieren, für welche der trophische Lebensstil bekannt ist. Phylogenomische Analysen unter Verwendung von fast 400 proteinkodierenden Genen, gewonnen aus öffentlich verfügbaren sowie in diesem Projekt neu angefertigten Genomen/Transkriptomen, werden es erlauben die frühen Diversifikationen der Flagellatenpilze zu entwirren. Die neu generierten Sequenzdaten werden außerdem nach den im ersten Teil des Projektes identifizierten Virulenzgenen abgesucht. Die phylogenetische Einordnung von Lebensstilen der Flagellatenpilze soll es ermöglichen den ursprünglichen Zustand diverser Gruppen zu charakterisieren und unser Verständnis über die Evolution von Parasitismus in phytoplanktoninfizierenden Flagellatenpilzen verbessern.

Messstellen Phytoplankton

Derzeit wird das Phytoplankton an 78 Wasserkörpern untersucht. Für die WRRL werden fünf Wasserkörper in der überblicksweisen Überwachung und 67 Wasserkörper im operativen Messnetz anhand des Phytoplanktons untersucht. Weiterhin sind sechs nicht berichtspflichtige Seen kleiner 50 ha im regelmäßigen Monitoring, darunter in SH besonders seltene und schützenswerte Seetypen, wie die karbonatarmen Weichwasserseen sowie Seen, die ökologisch noch weitgehend intakt sind.

Gewässertyp des Jahres (Applikation)

Der Gewässertyp des Jahres - Eine Aktion des Umweltbundesamtes. Grundlage für die Auswahl ist die nach der Wasserrahmenrichtlinie vorgenommene Einteilung der Gewässer in Typen. Aktuell werden in Deutschland 25 Fließgewässertypen, 14 Seentypen und 11 Typen für Küsten- und ⁠Übergangsgewässer⁠ unterschieden. Über die Gewässer des „Typs des Jahres“ erfahren Sie, welche besonderen Eigenschaften sie haben, wie sie überwiegend genutzt werden und wodurch sie besonders gefährdet sind. Gewässertypen des Jahres: 2011 - Typ 5: Grobmaterialreiche, silikatische Mittelgebirgsbäche; 2012 - Typ 15: Sand- und lehmgeprägte Tieflandflüsse und Typ 15_g: Große sand- und lehmgeprägte Tieflandflüsse; 2013 - Typ 3: Fließgewässer der Jungmoräne des Alpenvorlandes (Bäche der Jungmoräne des Alpenvorlandes (3.1); kleine Flüsse der Jungmoräne des Alpenvorlandes (3.2)); 2014 - Typ 13: Kalkreicher, geschichteter Tieflandsee mit relativ kleinem Einzugsgebiet (2 - 123 km²); 2015 - Typ N2: Salzreiches (Euhalines) Wattenmeer; 2016 - Typ 10: Kiesgeprägter Strom; 2017 - Typ 8: Talsperren; 2018 - Typ 14: Sandiger Tieflandbach; 2019 - Typ T1: Großes Ästuar; 2020 - Typ 7: Steiniger, kalkreicher Mittelgebirgsbach; 2021 - Typ 4: Alpensee; 2022 - Grundwasser; 2023 - Mittelgebirgsfluss; 2024 - Flaches Küstengewässer der Ostsee Der Gewässertyp des Jahres - Eine Aktion des Umweltbundesamtes<br><br> Grundlage für die Auswahl ist die nach der Wasserrahmenrichtlinie vorgenommene Einteilung der Gewässer in Typen. Aktuell werden in Deutschland 25 Fließgewässertypen, 14 Seentypen und 11 Typen für Küsten- und ⁠Übergangsgewässer⁠ unterschieden. Über die Gewässer des „Typs des Jahres“ erfahren Sie, welche besonderen Eigenschaften sie haben, wie sie überwiegend genutzt werden und wodurch sie besonders gefährdet sind. <br><br>Gewässertypen des Jahres: <br>2011 - Typ 5: Grobmaterialreiche, silikatische Mittelgebirgsbäche; <br>2012 - Typ 15: Sand- und lehmgeprägte Tieflandflüsse und Typ 15_g: Große sand- und lehmgeprägte Tieflandflüsse; <br>2013 - Typ 3: Fließgewässer der Jungmoräne des Alpenvorlandes (Bäche der Jungmoräne des Alpenvorlandes (3.1); kleine Flüsse der Jungmoräne des Alpenvorlandes (3.2)); <br>2014 - Typ 13: Kalkreicher, geschichteter Tieflandsee mit relativ kleinem Einzugsgebiet (2 - 123 km²); <br>2015 - Typ N2: Salzreiches (Euhalines) Wattenmeer; <br>2016 - Typ 10: Kiesgeprägter Strom; <br>2017 - Typ 8: Talsperren; <br>2018 - Typ 14: Sandiger Tieflandbach; <br>2019 - Typ T1: Großes Ästuar; <br>2020 - Typ 7: Steiniger, kalkreicher Mittelgebirgsbach; <br>2021 - Typ 4: Alpensee

WRRL: Ökologischer Zustand OWK 2022-2027 - Phytoplankton

Nach Anlage 4 OGewV sind für die Bewertung des ökologischen Zustands vier biologische Komponenten heranzuziehen: hier Bewertung Phytoplankton

Surface seawater carbonate chemistry, nutrients and phytoplankton community composition on a transect between North Sea and Arctic Ocean, 2008

This data was collected during the 'ICE CHASER' cruise from the southern North Sea to the Arctic (Svalbard) in July-Aug 2008. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.

WRRL: Ökologischer Zustand OWK 2022-2027 - Phytoplankton

Nach Anlage 4 OGewV sind für die Bewertung des ökologischen Zustands vier biologische Komponenten heranzuziehen: hier Bewertung Phytoplankton

1 2 3 4 596 97 98