Das Projekt "Benchmark-Klimatologien mittels Radiookkultation" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Graz, Wegener Zentrum für Klima und Globalen Wandel.Genaue und konsistente Langzeit-Daten sind nötig, um Klimavariabilität und Klimawandel detektieren, verstehen, und zuordnen zu können. Unser Wissen über Veränderungen in der freien Atmosphäre ist immer noch begrenzt, da solche Daten bis jetzt nicht in ausreichender Qualität zur Verfügung stehen. Eine neue Datenquelle, mittels der man einige Probleme von etablierten Methoden überwinden kann, ist die Radiookkultations-Methode (RO). Mit ihr ist es im Prinzip möglich, eine absolute Referenz ('Benchmark') für die obere Troposphäre und untere Stratosphäre (engl. UTLS) zu erstellen, da die Daten auf einer Zeitmessung basieren, und damit an die internationale Definition der Sekunde gebunden sind. Tatsächlich konnten wir in früheren Arbeiten zeigen, dass RO Klimatologen von unterschiedlichen Satelliten erstaunlich gut übereinstimmen (besser als 0.1 K). Der Wert von RO Daten für die Klima-Beobachtung wird zunehmend erkannt, es existieren aber auch Bedenken, dass es systematische Fehler geben könnte, die Daten von unterschiedlichen Satelliten gemein sind. Wir haben eine Liste solcher möglicher systematischen Fehler zusammengestellt, und werden diese genau analysieren. Das wird zu einem besseren Verständnis dieser (kleinen) Restfehler führen, und es erlauben, sie zu vermeiden oder zu entfernen, oder aber, sie genau zu charakterisieren, falls sie unvermeidbar sind. Wir werden diese Erkenntnisse nützen, um die Methode zur Gewinnung von RO Daten zu verfeinern, und damit RO Klimatologien der Parameter Brechungswinkel, Refraktivität, Dichte, Druck, Geopotentielle Höhe und Temperatur in der UTLS, mit bisher unerreichter Genauigkeit und Konsistenz zu erstellen. Dank ihrer hohen Qualität und einer genauen Fehler-Charakterisierung darf man erwarten, dass diese Daten als absolute Referenz (Benchmark) für globale Klimatologien der UTLS dienen können. Durch die Kombination aus hoher Genauigkeit und guter vertikaler Auflösung eignen sich die Daten auch besonders gut für die Beobachtung von Klimavariabilität und Klimawandel in der UTLS, wie z. B. Änderungen der Tropopausenhöhe, Änderungen der Übergangshöhe zwischen troposphärischer Erwärmung und stratosphärischer Abkühlung, oder Temperaturänderungen, die nach einem größeren Vulkanausbruch zu erwarten sind. Das verbesserte Verständnis der systematischen Fehler wird auch im Bereich der numerischen Wettervorhersage nützlich sein, wo RO Daten jetzt schon mit Erfolg assimiliert werden. usw.
Das Projekt "Klimatrends und Modelevaluation mittels Radio-Okkultation" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Graz, Wegener Zentrum für Klima und Globalen Wandel.Der Nachweis des anthropogenen Klimawandels erfordert hochqualitative Beobachtungsdaten der Erdatmosphäre. Eine besondere Herausforderung ist in diesem Zusammenhang die Erforschung der oberen Troposphäre und unteren Stratosphäre (engl. UTLS), eine Region die sensibel auf Klimaänderungen reagiert. Unterschiedliche Temperaturtrends von verschiedenen Datensätzen waren Gegenstand zahlreicher Diskussionen und eine Annäherung wurde erst kürzlich erzielt. Neu homogenisierte Radiosondendaten sowie Satellitendaten der Advanced/Microwave Sounding Unit (MSU/AMSU) zeigen nun fundamentale Übereinstimmung bezüglich einer Erwärmung der Troposphäre und einer Abkühlung der Stratosphäre, konsistent mit Oberflächen- und Klimamodelltrends. Grundlegende Unsicherheiten bestehen jedoch nach wie vor bezüglich der Stärke von Trends in der freien Atmosphäre. In diesem Zusammenhang bietet die Radio-Okkultation (RO) neue Möglichkeiten mittels unabhängiger und sehr genauer Beobachtungen in der UTLS mit globaler Bedeckung, Allwettertauglichkeit, Langzeitstabilität und Homogenität. RO Daten basieren auf Zeitmessung mit hochgenauen Atomuhren gebunden an die internationale Definition der Sekunde und können daher als absolute Klimareferenzdaten angesehen werden. Klimaparameter werden mit hoher vertikaler Auflösung und hoher Genauigkeit gewonnen. Beobachtungs- und Abtastfehler sind gut definiert. RO Klimatologien für Brechungswinkel, Refraktivität, geopotentielle Höhe, Temperatur, und spezifische Feuchte sind als Indikatoren einer Klimaänderung sehr gut geeignet. Da die RO Zeitreihe noch relativ kurz ist, konnte deren Langzeiteignung bis jetzt noch nicht demonstriert werden. Von einer mind. 10 Jahre langen Zeitreihe im Jahr 2011 erwartet man sich jedoch detektierbare Trends. Hauptziel des Projektes TRENDEVAL sind die Untersuchung und Bewertung von Klimatrends in der UTLS basierend auf einer neuen RO Klimazeitreihe sowie Detektion und Ursachenzuweisung eines Klimasignals und die Evaluierung von Klimamodellen. Ein Vergleich von RO Klimatologien, die von den fünf führenden internationalen RO Prozessierungszentren zur Verfügung gestellt werden, wird durchgeführt um strukturelle Unsicherheiten im Datensatz zu quantifizieren und die Qualität und Reproduzierbarkeit von Ergebnissen zu bewerten. Der so erstellte RO Klimadatensatz inklusive vollständiger Fehlercharakterisierung wird mit konventionellen Atmosphärenbeobachtungen - aktuellen Radiosonden- und MSU/AMSU Datensätzen - verglichen um offene Fragen bezüglich UTLS Trends zu klären. Der Nachweis eines Klimaänderungssignals unter Berücksichtigung der atmosphärischen Variabilität wird mit der 'optimal fingerprinting' Methode durchgeführt. Die Ursachenzuweisung von anthropogenem und natürlichem Klimawandel wird auch zur Modellevaluierung verwendet. Schwerpunkt der Evaluierung ist die Untersuchung von Wasserdampf und Temperaturgradienten der tropischen oberen Troposphäre in Klimamodellen verglichen mit RO Daten. usw.
Das Projekt "Klimamonitoring mit Radio-Okkultationsdaten" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Graz, Wegener Zentrum für Klima und Globalen Wandel.Die Bereitstellung genauer, langzeit-stabiler Messdaten wurde vom Intergovernmental Panel on Climate Change (IPCC) im Report des Jahres 2001 als eine der Aktionen höchster Priorität für die zukünftige Klimabeobachtung definiert. Bis jetzt war es nicht möglich, Trends in der Atmosphärentemperatur mit Satellitendaten in überzeugender Genauigkeit zu bestimmen. Radio-Okkultationsdaten (RO), die mittels Signalen von Navigationssatelliten (GNSS - Global Navigation Satellite System) gewonnen werden, haben das Potential, die Probleme traditioneller Datenquellen zu lösen. Die besondere Eignung für die Klimabeobachtung resultiert aus der einzigartigen Kombination aus hoher Genauigkeit, hoher vertikaler Auflösung, Langzeit-Stabilität, globaler Bedeckung und Allwetter-Tauglichkeit. Die Eignung zur Klimabeobachtung wurde durch Simulationsstudien und klimatologische Analysen echter Daten nachgewiesen. CLIMROCC verwendet RO Daten der Okkultationssensoren auf den Satelliten CHAMP, SAC-C, MetOp (Start geplant für April 2006) und COSMIC (Start geplant für März 2006). Mit ihnen werden genaue, validierte Monats-, Saison- und Jahresklimatologien von Temperatur, Geopotentieller Höhe, Feuchte und Refraktivität in der oberen Troposphäre und unteren Stratosphäre (UTLS) mit einer horizontalen Auflösung von ca. 500 - 1500 km berechnet. Diese Arbeit baut auf existierenden Einzelsatelliten-Klimatologien von CHAMP auf, der erstmals die Möglichkeit bot, solche Klimatologien zu bilden. Zurzeit werden Temperaturfelder für die Jahre 2002-2005 berechnet; das Projekt wird Ende 2005 abgeschlossen sein. Durch Hinzunahme weiterer Klimaparameter und Ausweitung auf Multisatelliten-Klimatologien, mithilfe der Daten von COSMIC und MetOp, die eine noch höhere Qualität versprechen, zielt CLIMROCC darauf ab, einen neuen Standard für Referenz- Klimatologien in der UTLS Region zu setzen. Die Klimatologien werden modellunabhängig durch statistische Flächenmittelung berechnet, zusammen mit sorgfältigen Abschätzungen der Beobachtungs- und Repräsentativitätsfehler. Sie werden einerseits mit Analysefeldern der führenden Wettervorhersagezentren validiert, andererseits werden die Klimatologien unterschiedlicher RO Sensoren untereinander verglichen. Basierend auf diesen klimatologischen Feldern werden Indikatoren für den Klimawandel untersucht. Das übergeordnete Ziel von CLIMROCC ist, die Änderung des Klimas in der UTLS Region mit neuartiger Genauigkeit und Konsistenz zu beobachten, und damit unsere Fähigkeit zu verbessern, Klimavariabilität und Klimawandel zu detektieren, die Ursachen zu verstehen und gute Klimavorhersagen zu berechnen.
Das Projekt "AROSA: Assimilation of radio occultation from commercial satellites over Austria" wird/wurde gefördert durch: Österreichische Forschungsförderungsgesellschaft mbH (FFG). Es wird/wurde ausgeführt durch: Zentralanstalt für Meteorologie und Geodynamik.Austria depends significantly on high quality, highly resolved weather forecasts, especially due to its complex orography, manifold landscapes and special meteorologically induced natural hazards in the alpine area and its important economic branches agriculture and tourism, which are strongly impacted by weather. The success of these forecasts is determined by a precise definition of the current state of the 3D atmosphere with highly resolved measurements due to the nonlinear nature of atmospheric processes. Radio occultation methods investigate the bending of a radio signal on its way through the atmosphere by measuring the Doppler shift between a global navigation satellite system (GNSS) and a low earth orbit satellite (LEO) and their precise positions. The bending and refraction of the signal depend on atmospheric properties like ionisation of the upper atmosphere and moisture and temperature in lower levels. So, these properties can be indirectly estimated by the bending with a high vertical resolution on the meter scale in the upper levels, where conventional observations (aircraft and radio soundings) are relatively scarce. The observation number of public financed probes dropped down recently by aging and breakdown of the LEO satellites, while on contrary a huge number of recently commercially launched and maintained satellites of the Spire Inc increased the amount of radio occultation data drastically. In addition to atmospheric monitoring, the occultation method can be used for the initialisation of numerical weather prediction models, as it was already shown for some global models (Arpège, GME, ECMWF-IFS), but also limited area models (WRF). Especially, in the latter case with higher model resolutions the definition of the observation operator simulating the measured parameter is rather crucial to succeed. Within the scope of this project, the new occultation measurements of Spire Inc will be assimilated for the first time into the numerical weather prediction system of ZAMG named AROME over Austria. To achieve this aim, data pre-processing is necessary (derivation of the bending angle, quality check by passive assimilation and first guess departure checks). For the time being, a 2D observation operator for bending angle is available in the AROME code, which was developed for coarser resolutions. Within the project, it will be investigated, how it can be improved and adapted to higher resolutions and which steps would be necessary to reach this goal. The possible impact of the new observations on the model performance will be estimated by case studies and a longer test period using intercomparison to a reference run without radio occultation assimilation. Finally the potential of an operational application of the data within the AROME system will be envisaged. (abridged text)
SWACI is a research project of DLR supported by the State Government of Mecklenburg-Vorpommern. Radio signals, transmitted by modern communication and navigation systems may be heavily disturbed by space weather hazards. Thus, severe temporal and spatial changes of the electron density in the ionosphere may significantly degrade the signal quality of various radio systems which even may lead to a complete loss of the signal. By providing specific space weather information, in particular now- and forecast of the ionospheric state, the accuracy and reliability of impacted communication and navigation systems shall be improved. GPS radio occultation measurements onboard geo research satellites such as CHAMP and GRACE are used for retrieving vertical electron density profiles of the ionosphere. At present, only GPS measurements from GRACE are available. These data are routinely provided by GFZ Potsdam. Thus, the derived electron density profiles retrieved in SWACI are a common data product of DLR and GFZ Potsdam. Users are asked to acknowledge this in a proper way.