Darstellung der NOx, PM10 und PM2, 5-Emissionen der Verursachergruppen Industrie, Hausbrand und Kfz-Verkehr, Stand 2015
Verbessertes Verständnis der Emissionen von leichten flüchtigen organischen Verbindungen (VOCs) und deren genaue Zusammensetzung aus großen Populationszentren sowie deren chemische Veränderung windabwärts. Dies beinhaltet die Messung möglichst vieler VOCs mit unterschiedlichen Eigenschaften wie chemische Lebensdauern, chemische Eigenschaften (z.B. unterschiedliche Abbauprozesse wie z.B. Reaktion mit OH, NO3, O3, Photolyse), Wasserlöslichkeit (Auswaschung und/oder trockene Deposition), Dampfdruck (auswirkend auf Bildung und Wachstum von organischen Aerosolen). Eine wichtige Frage ist diesbezüglich die Rolle von biogenen Emissionen in asiatischen Megastädten. Die gesammelten Daten sollen mit Simulationen des neuen Klimamodells ICON-ART in Kollaboration mit der Modellgruppe des IMK (Institut für Meteorologie und Klimaforschung) verglichen werden. Hierbei geht es darum Schwachstellen in den verwendeten Emissionsdaten und der chemischen Prozessierung entlang der Transportpfade aufzudecken. Des Weiteren können hier auch die Wechselwirkungen mit organischen Aerosolen sowie Mischungs- und Verdünnungsprozesse mit Hintergrundluftmassen untersucht werden.Ausserdem sollen die Quelltypen und deren Aufteilung von europäischen und asiatischen Megastädten identifizert und quantifiziert werden. Unterschiede diesbezüglich werden erwartet und wurden bereits identifiziert (Guttikunda, 2005; von Schneidemesser et al., 2010; Borbon et al., 2013), z.B. aufgrund von unterschiedlichen Treibstoffen, PKW und LKW - Typen / Alter, Abfall-Zusammensetzungen / Management, Energieerzeugung, etc. Zum Beispiel ist Acetonitril ein verlässlicher Marker für Biomassenverbrennung und es wird vermutet, dass dessen Bedeutung in Asien wesentlich größer ist als in Europa. Eine weitere Frage ist, ob die photochemische Ozonbildung windabwärts von Megastädten durch NOx oder durch VOCs limitiert ist und wie verändert sich dies entlang der Transportpfade bzw. mit dem Alter der Luftmasse. Gibt es diesbezüglich allgemeine Unterschiede zwischen asiatischen und europäischen Megastädten und wie ist der Einfluss biogener Emissionen?
Die Rigdon GmbH mit Sitz in Günzburg an der Donau führt Runderneuerung von Reifen für Lastkraftwagen, Busse, Bagger, Flugfeldschlepper sowie für Erdbewegungsmaschinen und landwirtschaftliche Fahrzeuge durch. Das Unternehmen gilt als größter unabhängiger Werksrunderneuerer in Deutschland. Runderneuerte Reifen sind im Vergleich zu Neureifen umweltfreundlicher, da für ihre Herstellung 50 Prozent weniger Energie und zwei Drittel weniger Material benötigt wird. Pro Jahr fallen zwischen 550.000 und 600.000 Tonnen Altreifen in Deutschland an. Die Runderneuerung ist dabei als Vorbereitung zur Wiederverwendung die ökologischste Form der Altreifenverwertung. Bislang erfolgt die Runderneuerung von Pkw-Reifen in einem überwiegend manuellen Prozess. Zu Beginn steht die manuelle Eingangsprüfung, nur stichprobenartig kommt eine maschinelle Prüfung in einer Shearografie-Anlage zum Einsatz. Für das anschließende Abrauen der alten Lauffläche in einer Raumaschine bestehen voreingestellte Rauprogramme, deren Auswahl manuell erfolgt. Da sich die Reifendimensionen trotz gleicher Typangabe der Hersteller erheblich unterscheiden, ist die Wahl des korrekten Rauprogramms besonders wichtig, durch die manuelle Auswahl ist sie jedoch fehleranfällig. Für die Runderneuerung von Pkw-Reifen hat sich das Verfahren der Heißerneuerung durchgesetzt, bei der die Reifen mit dem zukünftigen Profil versehen werden. Mittels eines Extruders wird eine nicht vulkanisierte Gummimischung aufgebracht, die anschließend bei ca. 165 Grad Celsius in speziellen Heizpressen vulkanisiert wird. Abschließend erfolgen die Endkontrolle und das Entfernen überschüssigen Materials und kleiner Grate. Mit dem Investitionsvorhaben beabsichtigt die Rigdon GmbH eine innovative Anlage für die PKW-Reifenrunderneuerung zu errichten, in der das gesamte Handling der Reifen automatisiert erfolgt und damit der stark manuell geprägte Stand der Technik mittels Anlagenautomatisierung weiterentwickelt werden soll. Mit neuartiger Prüftechnik, die für alle behandelten Reifen zum Einsatz kommt, werden zuverlässig Fehler erkannt bzw. vermieden. Ziel ist dabei, qualitativ mit Neureifen gleichwertige Produkte herzustellen. Die vormals manuelle Altreifen-Eingangskontrolle wird durch eine automatische Erfassung von Reifentyp und Größe mit anschließender QR-Code-Vergabe ersetzt. Dieser enthält alle festgestellten Parameter als auch einen digitalisierten Lebenslauf. Es schließt sich die Altreifenprüfung mittels Shearografie und kombinierter Röntgentechnik an. Mittels KI-gestützter Bilderkennung sollen erstmalig neben Schadbildern wie Schichtseparationen in der Altreifenkarkasse auch potentielle Beschädigungen in den metallischen Komponenten geprüft werden, was nach Stand der Technik bislang nicht möglich ist. Die für die Runderneuerung als geeignet sortierten Reifen werden automatisiert in die Rauanlage gegeben. Entsprechend der zuvor erfassten Parameter wählt die Anlage das geeignete Rauprogramm. Anschließend durchlaufen die Reifen die Wulstreinigungsmaschine sowie ein Cementingsystem zum Lösungsauftrag und folgend das Aufbringen des neuen Materials in einer Spezial-Belegmaschine. Die Belegmaschine trägt Silica-Compounds, die in ähnlicher Form auch bei der Neureifenfertigung eingesetzt werden, mittels Multi-Extruder gezielt auf die Karkasse auf. In den Heizpressen, welche mittels Roboter bestückt werden, erfolgt die Vulkanisation für 0,5 Stunden und bei 165 Grad Celsius. Einer Reinigung schließt sich eine Ausgangskontrolle mittels Shearografie und Röntgenprüfanlage an. Positiv geprüfte Reifen werden in das vollautomatisierte Hochregallager weitergeführt. Runderneuerte PKW-Reifen verursachen bei der Produktion 21 Kilogramm CO 2 weniger als ein vergleichbarer Neureifen. Bei der in diesem Vorhaben geplanten Ausbringungsmenge von 300.000 Stück pro Jahr ergäbe dies eine Einsparung von rund 6.300 Tonnen CO 2 pro Jahr. Aufgrund von eingeschränkter Kundenakzeptanz und einem hohen Kostendruck durch preisgünstige Neureifen aus dem asiatischen Raum beträgt die Runderneuerungsrate derzeit weniger als 1 Prozent. Da die geplante Anlage erstmals qualitativ mit Neureifen vergleichbare Produkte herstellt, wird erwartet, die Akzeptanz für runderneuerte Pkw-Reifen zu erhöhen und damit einen wesentlichen Beitrag zur Kreislaufwirtschaft in der Automobil- bzw. Reifenbranche zu leisten. Nach erfolgreicher Umsetzung kann dieses Vorhaben der gesamten Branche als Demonstrationsvorhaben dienen. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: Rigdon GmbH Bundesland: Bayern Laufzeit: seit 2024 Status: Laufend
In der Forstwirtschaft und der holzverarbeitenden Industrie entstehen im Zuge der Mechanisierung immer mehr Arbeitsplätze, bei denen die körperliche Belastung in den Hintergrund tritt, die mentale Komponente (Stress) hingegen einen sehr großen Stellenwert einnimmt. Typische Stressfolgekrankheiten, wie Herzinfarkt und Magengeschwüre sind bekannt. Daraus resultieren vermehrte Krankenstandstagen, aber auch die Leistungsfähigkeit und die Unfallzahlen werden durch Stress negativ beeinflusst. Der Untersuchungsschwerpunkt dieser Studie liegt bei der Erfassung der Stressbelastung von Maschinenführern in der Forst- und Holzwirtschaft (Harvester, Schlepper, Bagger, Sortieranlage im Sägewerk, LKW mit Holzladekran). Speziell für den Arbeitsbereich des Harvesterfahrers sollen die einzelnen Stressoren untersucht und dabei die Hauptstressfaktoren herausgefiltert werden. Durch die Entwicklung eines Eignungstests für Harvesterfahrer wird es in Zukunft möglich sein - ähnlich wie in der Pilotenausbildung - bereits im Vorfeld zu beurteilen ob man den Anforderungen des Berufes gewachsen ist. Durch ein individuell angepasstes Interventionsprogramm wird Stress am Arbeitsplatz vermindert und damit eine wesentliche Ursache der Unfallhäufigkeit bekämpft. In Zusammenarbeit mit der Forstlichen Ausbildungsstätte Ort/Gmunden sollen die Erkenntnisse in das Ausbildungsprogramm für Harvesterfahrer aufgenommen und so den angehenden Unternehmern das nötige Werkzeug im Umgang mit Stress vermittelt werden.
Senatorin Bonde dankt den Mitarbeiterinnen und Mitarbeitern der BSR und der Berliner Wasserbetriebe sowie den Beschäftigten der Bezirke und der SenMVKU Ute Bonde, Senatorin für Mobilität, Verkehr, Klimaschutz und Umwelt: „Ich bin dankbar, dass die Bezirke durch meine Initiative am Freitag in die Lage versetzt wurden, koordiniert und gesamthaft Bedarfe und Ressourcen mit meinem Haus und vor allem der Berliner Stadtreinigung (BSR) abzustimmen.“ Die Lage stellt sich momentan wie folgt dar: Bereits am Wochenende wurde umfangreich mit den Maßnahmen zur Bekämpfung des Glatteises begonnen. Nun gilt es, gemeinsam mit der BSR die gemeldeten Prioritäten der Bezirke konzentriert abzuarbeiten und eine ausreichende Menge an Streugut sicherzustellen. Einzelnen Bezirken, die am gestrigen Tag noch Bedarf an Streugut gemeldet hatten, wurde dies heute durch die BSR zur Verfügung gestellt. Nach derzeitigem Stand und den derzeitigen Wetterprognosen, ist davon auszugehen, dass die BSR auch weiterhin den Bedarf an Streugut decken kann, sofern keine veritablen Mengen an Neuschnee oder Glatteis eintreten. Zugleich wird bereits in die Zukunft geblickt. Eine gewonnene Erkenntnis der aktuellen Lage wird sein, die Koordinierungsrunde beizubehalten, wenn es darum geht, unsere Bäume fit für Frühling und Sommer zu machen. Geplant ist, die aktuelle Koordinierungsrunde zur Bekämpfung der Glätte, die Senatorin Bonde initiiert hat, auch dazu zu nutzen, mögliche Folgen der Bekämpfung der aktuellen Situation zu koordinieren. Dieser enge Schulterschluss aus Hauptverwaltung, Bezirken und Landeseigenen dient auch mit Blick auf das Klimaanpassungsgesetz. Um Schäden an Stadtbäumen gering zu halten, besteht die Möglichkeit, durch intensives Wässern noch vor dem Laubaustrieb Auftaumittel in tiefere Bodenschichten zu verlagern. In Modellversuchen mit den typischen Stadtbaumgattungen Linde, Ahorn, Eiche und Ulme konnten negative Auswirkungen mittels kalibetonten Volldüngergaben abgemildert werden. Wichtig für die Erzielung des gewünschten abmildernden Effektes ist eine ausreichende Wasserversorgung der Straßenbäume während der Frühjahrsmonate. Mit Blick auf kommende Winter arbeitet die Senatsumweltverwaltung bereits an konkreten Strategien.
Der Molkenmarkt, als einst historisches Zentrum Berlins, ist gegenwärtig nur noch schwer erkennbar. Wo heute überdimensionierte Straßen und Parkplatzflächen den Raum prägen, standen einst zahlreiche geschichtsträchtige Häuser in unmittelbarer Nähe des ältesten Marktplatzes der Stadt. Durch Zerstörung und Umgestaltung verlor der Molkenmarkt seine Bedeutung als lebendiges Stadtquartier und die heutigen historischen Bauten, wie das Rote Rathaus und die Parochialkirche, stehen beziehungslos zueinander im Stadtgrundriss. Durch den am 14.09.2016 festgesetzten Bebauungsplan (B-Plan) 1-14 (PDF, 5.7 MB) wurde die Grundlage geschaffen, eine städtebauliche Neustrukturierung vorzunehmen und den Molkenmarkt in Annäherung an seinen historischen Grundriss für die Menschen zurückzugewinnen. Der Fokus dafür liegt in der Umverlegung der Grunerstraße in den Verlauf der Gustav-Böß-Straße und den damit verbundenen Änderungen der angrenzenden Straßenverläufe. Gleichzeitig wird durch die Maßnahme neuer Raum zur innerstädtischen Bebauung aus ungenutzten Arealen geschaffen. Die im Lageplan dargestellte Bebauung stammt aus der Bebauungsplanstudie aus dem Jahr 2009 und wird derzeit durch die Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen weiterbearbeitet. Projekte im Städtebau (Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen): Molkenmarkt Weitere Informationen zu Projekten im Stadtzentrum (Stadtwerkstatt) Die Straßenbaumaßnahme wird in zwei Bereiche unterteilt. Zum einen in den “Umbau Mühlendamm/Molkenmarkt/Grunerstraße (Hauptstraßenzug) von Mühlendammbrücke bis Littenstraße einschließlich den Anschlüssen Spandauer Straße bis Stralauer Straße” und zum anderen in den “Umbau der Quartiersstraßen im Klosterviertel (Bereich Molkenmarkt/Klosterviertel)”. Zunächst ist der neue Hauptstraßenzug als Ortsdurchfahrt der Bundesstraße B1 zu errichten. Erst nach der Verkehrsfreigabe der neuen Straße stehen die ehemaligen Straßenflächen für Hochbauaktivitäten zur Verfügung. Aktuell ruht die Planung für die Hochbaumaßnahmen und damit für die Quartiersstraßen mit dem Ziel einer ökologischen Neuausrichtung der Planungsinhalte im Kontext der Schaffung eines ökologischen Musterquartiers Klosterviertel. Es ist vorgesehen, sowohl die Stadtgesellschaft als auch verschiedene Behörden in den Prozess einzubeziehen. Ein Baubeginn ist aus diesem Grund derzeit nicht absehbar. Das Vorhaben Verkehrsführung Der Bau Voruntersuchungen Im Rahmen der Bebauungsplanbearbeitung wurde bereits eine Umweltprüfung vorgenommen, die im B-Plan 1-14 (PDF, 5.7 MB) in Kapitel II – Umweltbericht – vollständig eingearbeitet ist. In dieser werden unter anderem die Schwerpunkte des Schallschutzes, der Schadstoffbelastung und der Vegetationsflächen behandelt. Relevante Ergebnisse sind zum einen die schallschutztechnischen Anforderungen, die durch ergänzende Maßnahmen an Bestandsgebäuden im Einflussbereich der Hauptverkehrsstraßen erreicht werden sollen, als auch die Maßnahmen zur Einhaltung der Immissionsgrenzwerte an der zukünftigen Gebäudeecke Molkenmarkt/Grunerstraße. Außerdem kommt es während der Baumaßnahme zu erheblichen Änderungen und Verlust von Vegetationsflächen. Diese werden im Zuge des Baus entlang der neuen Straßenzüge durch Ersatzpflanzungen und neue Grünflächen ausgeglichen. Insgesamt werden ca. 140 Straßenbäume neu gepflanzt. Die neuen Verkehrsführungen wurden unter Berücksichtigung der Strategien des „Stadtentwicklungsplans Verkehr und den Verkehrsprognosedaten des Landes Berlin 2025“ geplant. Die verkehrliche Leistungsfähigkeit wurde durch Gutachten im Zuge der Aufstellung des Bebauungsplans 1-14 nachgewiesen. Der neue Hauptstraßenzug als Teil der Bundesstraße 1, im Lageplan als Mühlendamm, Molkenmarkt und Grunerstraße (neu) bezeichnet, wird auch in Zukunft stark befahren sein. Daher werden die Querschnitte und die Gestaltung weiterhin die Charakteristika einer großstädtischen Hauptstraße aufweisen. Es erfolgt eine drei streifige Ausbildung der Fahrbahnen je Fahrtrichtung mit einer Geschwindigkeitsbegrenzung von 50 km/h. Durch die Umverlegung der Grunerstraße in den Verlauf der Gustav-Böß-Straße, werden Kreuzungspunkte neu strukturiert. Der bisherige überdimensionierte Verkehrsknoten Grunerstraße – Stralauer Straße – Spandauer Straße – Mühlendamm wird zukünftig durch eine Kurve, d.h. den Molkenmarkt verbunden und intelligent mittels Lichtsignalanlagen (LSA) geregelt. So soll für alle Verkehrsteilnehmer ein zügiger Verkehrsfluss sichergestellt werden. Im Jahre 2015 wurde die Planung auf Grund neuer Randbedingungen angepasst. Hauptaugenmerk lag dabei auf der Verbesserung der Radwegführung, die im Wesentlichen bereits den Kriterien des 2018 erlassenen Mobilitätsgesetzes entspricht. Für Fußgänger und Radfahrende werden attraktive Räume im Straßenland geschaffen und deren Verkehrssicherheit erhöht. Unter anderem werden zusätzliche Querungsmöglichkeiten getrennt für Fußgänger und Radfahrende angeordnet, Bushaltestellen werden barrierefrei ausgebaut und Radwege werden in komfortabler Asphaltbauweise ausgebaut. Von der Mühlendammbrücke kommend wird der Radverkehr auf einem 2 m breiten Radweg auf Gehwegniveau geführt. Dieser Radweg wird vor der Stralauer Straße auf 2 × 2 m erweitert, um für den geradeausfahrenden und den rechtsabbiegenden Radfahrenden jeweils eine separate Aufstellfläche zu schaffen. Die Signalisierung wird entsprechend angepasst. In Richtung Mühlendammbrücke wird ein 4,75 m, d.h. überbreiter Bussonderfahrstreifen markiert, der gleichzeitig den Radverkehr integriert. Hält der Bus in der Bushaltestelle, kann der Radfahrende sicher den Bus überholen. Entgegen der bisherigen Planung stehen dem motorisierten Individualverkehr hier zwei statt drei Fahrstreifen zur Verfügung, allerdings ist durch die Änderung an der LSA nunmehr die Abbiegebeziehung vom Molkenmarkt in Richtung Stralauer Straße möglich. Die Planaktualisierung, Lageplan Unterlage 5.1, Blatt 1, Stand März 2020, steht als Download zur Verfügung. Durch die Baumaßnahme werden die bisherigen Parkmöglichkeiten am Roten Rathaus entfallen. Alternativ stehen Parkplätze im Parkhaus an der Grunerstraße bzw. in der Tiefgarage unter der Alexanderstraße zur Verfügung. Entsprechend der historischen Bedeutung des Areals und der gewünschten gestalterischen Aufwertung des gemäß den B-Planfestsetzungen geplanten Stadtquartiers werden hochwertige Materialien verbaut, welche zudem wesentlich robuster und dauerhaft haltbarer sind. Im Straßenzug Mühlendamm-Molkenmarkt-Grunerstraße werden die Anlagen der Straßenbeleuchtung grundlegend mit LED-Leuchtmitteln neu konzipiert. Dabei wird das bestehende Beleuchtungskonzept im Umfeld des Alexanderplatzes mit Typ Urbi 3-Leuchten aufgegriffen und doppelarmige Leuchten, teils mit einer zusätzlichen Gehwegausleuchtung, errichtet. Die Gehwege werden mit vergüteten, geschliffenen Berliner Platten mit typischen Bischofsmützen im Diagonalverband ausgestattet. Die Fahrbahnen werden mit Natursteinborden aus Granit eingefasst. Im Bereich des Molkenmarktes entstehen attraktiv gestaltete Platzflächen mit Baum- und Bankstandorten, die zum Verweilen einladen. Die Befestigung greift die Thematik der Alten Münze auf: Natursteine werden kreisrund in Anlehnung an Münzen gepflastert. Die artenreichen Baumpflanzungen mit Amberbäumen, Gleditschien, Ulmen, roter Feldahorn und Japanischen Schnurbäumen erfolgen in einem hochwertigen Pflanzsubstrat. Daran schließt ein mit Blähton angereicherter Boden an, der Wasser speichern kann und somit auch im Innenstadtbereich gute Wachstumsbedingungen schafft. Die Baumscheiben entlang der Grunerstraße und im Bereich der Bushaltestelle Stralauer Straße werden mit einer wasser- und luftdurchlässigen gebundenen Abdeckung versehen, welche betretbar und leicht zu reinigen ist. Hochwertige Strauchpflanzungen erfolgen in Grünbeeten zwischen Gehweg und Radweg in der Innenkurve des Molkenmarktes direkt neben dem Nikolaiviertel. Zum Schutz dieser Flächen wird ein ca. 25 cm hohes Rabattengitter etabliert. Die Mittelstreifen werden mit Rasen begrünt, um neben Versickerungspotentialen auch optisch und naturräumlich einen Akzent zu setzen. Ausreichend stabile Fahrradabstellmöglichkeiten – Typ Kreuzberger Bügel – werden angeboten. Im Bereich des Mühlendamms und im neuen Straßenabschnitt Molkenmarkt wird zwischen den Fahrtrichtungen eine Trasse für eine zukünftige Straßenbahnlinie freigehalten Die BVG Berliner Verkehrsbetriebe wird hierfür ein gesondertes Planfeststellungsverfahren durchführen. Die Vorbereitungen für das Planfeststellungsverfahren laufen. Während der gesamten Planung wurde eine enge Zusammenarbeit mit tangierenden Behörden, Versorgungsunternehmen, Stiftungen und künftigen Bauherren angestrebt. Vor allem das Landesdenkmalamt (LDA) wurde für die archäologischen Erkundungen einbezogen. Auf diese Weise konnten die Grabungen der historischen Überreste mit dem Straßenbau vereint werden. Die erforderlichen passiven schallschutztechnischen Maßnahmen an Bestandsgebäuden können auf Kosten des Vorhabenträgers (Land Berlin) von den Grundstückseigentümern vorgenommen werden. Die Kostenerstattung wird vertraglich mit den einzelnen Eigentümern geregelt. Der Molkenmarkt gilt als ältester Markt Berlins. Über ihn verläuft die achthundert Jahre alte Verkehrsader, die über den ältesten Spreeübergang des Mühlendamms hinweg die mittelalterliche Doppelstadt Cölln-Berlin verband. Ziel der Untersuchung ist es, die Entwicklung dieser Keimzelle Berlins von der Stadtgründung vor ca. 800 Jahren zu ergründen. Für die künftigen Straßenbereiche bedeutet dies eine bauvorgreifende bzw. baubegleitende Erkundung in Verantwortung des Landesdenkmalamtes (LDA). Im archäologisch bedeutsamsten Bereich des Alten Berlin kam und kommt es zu großflächigen archäologischen Grabungen des LDA, die so im Vorfeld nicht bekannt bzw. erwartet waren. Im Rahmen dieses komplexen Gesamtvorhabens gilt es, den großflächigen Neubau der Grunerstraße, die Um- und Neuverlegung der gesamten unterirdischen Infrastruktur der geplanten Straßen und Wohnquartiere sowie die angemessene archäologische Dokumentation der im Boden erhaltenen historischen Zeugnisse des mittelalterlichen Stadtkerns von Berlin vor ihrer Zerstörung in Einklang zu bringen. Vor diesem Hintergrund besteht die besondere Aufgabe der Verantwortlichen für den Straßenbau, zusammen mit den vor Ort baubegleitend tätigen LDA zu entscheiden, welche historischen Relikte im Boden verbleiben können. Demzufolge werden nur diejenigen Mauerreste zurückgebaut, die einem sicheren, dauerhaften und standfesten Straßenbau entgegenstehen. Parallel zu den Tätigkeiten im Straßenbereich finden umfangreiche Ausgrabungen des Landesdenkmalamtes innerhalb der künftigen Wohnquartiere am Molkenmarkt und Klosterviertel statt. Siehe hierzu Führungen über die archäologischen Ausgrabungen am Molkenmarkt auf der Webseite des Landesdenkmalamts Berlin. Ab 2020 folgte die Ausgrabung im Areal südlich des Roten Rathauses, d.h. zwischen Gustav-Böß-Straße und der bisherigen Grunerstraße, der als Parkplatz diente, auf einer Fläche von über 6.000 m². Hier befanden sich bereits 30 cm unter der Straßenoberkante erste Relikte alter Bebauungen. Die vollständig ausgegrabenen Mauern, die mit Trümmerschutt verfüllt waren, sind Zeitzeugen des ehemaligen Elektrizitätswerkes und der Umspannstation Spandauer Straße. Das Elektrizitätswerk war im Untergrund in seiner baulichen Struktur unerwartet gut erhalten. Darüber hinaus wurde die gut erhaltene mittelalterliche Nordmauer des Blankenfeldehauses freigelegt. Diese ist von besonderem archäologischem Wert und wird daher als Zeitzeuge unter dem Straßenaufbau weitestgehend erhalten. Im Baufeld der StraIauer Str. wurde ein gut erhaltener Bohlendamm aus dem 12. Jahrhundert, also etwa der Gründungszeit von Berlin, aufgefunden. Dieser musste vorsichtig freigelegt und Teile davon aufwendig geborgen werden. Diese werden zu einem späteren Zeitpunkt, nach eingehenden Untersuchungen, in ein Museum verbracht. Die Straßenbauausführung erfolgt in mehreren Bauphasen. Der Durchgangsverkehr sowie der Quell- und Zielverkehr im Gebiet sind während der Bauausführung gewährleistet. Im Hauptstraßenzug stehen während der Baumaßnahmen zwei Spuren je Fahrtrichtung mit 3,00 m Breite dem motorisierten Individualverkehr zur Verfügung. Beidseitig wird ein mindestens ein 1,50 m breiter Gehweg für Fußgänger angeboten und Querungs-möglichkeiten vorgesehen. Radfahrende erhalten eine ausreichende Breite von mindestens 1,50 m pro Richtung.
Dieser Datensatz stellt die Planzeichnungen der Bauleitpläne in Hamburg dar, nicht aber die textlichen Festsetzungen.
<p>Das Verkehrswachstum auf der Straße sorgt für einen nahezu konstant hohen Energieverbrauch seit 1995. Die Energieverbräuche auf der Schiene sinken kontinuierlich.</p><p>Verkehr braucht Energie</p><p>2023 betrug der gesamte <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des Verkehrssektors ca. 3.498 Petajoule (PJ) (siehe Abb. „Entwicklung des gesamten Primärenergieverbrauchs im Verkehrssektor“). Das war ein Drittel des gesamten Primärenergieverbrauchs in Deutschland (vgl. dazu <a href="https://bmdv.bund.de/SharedDocs/DE/Artikel/G/verkehr-in-zahlen.html">BMDV: Verkehr in Zahlen</a>, S. 302). Im Verkehrssektor stieg der Primärenergieverbrauch seit 1995 kontinuierlich an, pandemiebedingt lagen die Werte 2020 und 2021 unter denen der Vorjahre, aber auch 2023 war der Verbrauch noch geringer als 2019.</p><p>Der Personenverkehr benötigt rund 65 % des gesamten Primärenergieverbrauchs im Verkehrssektor. Der Energieverbrauch im Straßenverkehr ist seit 1999 mit leichten Schwankungen nahezu konstant, seit 2020 zeigt er nach dem pandemiebedingten Rückgang eine stark steigende Tendenz. Im Schienenverkehr ist der Energieverbrauch dagegen seit 1995 kontinuierlich gesunken (siehe Abb. „Entwicklung des Primärenergieverbrauchs im Personenverkehr“).</p><p>Der Güterverkehr benötigte dementsprechend ca. 35 % des gesamten verkehrsbedingten Primärenergieverbrauchs in 2023. Zwischen 1995 und 2023 stieg der Verbrauch um rund 42 % an, im Wesentlichen durch die Zunahme des Straßengüterverkehrs. Besonders stark war auch die Zunahme im Luftverkehr, während die Energieverbräuche im Schienengüterverkehr und in der Binnenschifffahrt abnahmen (siehe Abb. „Entwicklung des Primärenergieverbrauchs im Güterverkehr“).</p><p>Ein wichtiger Baustein nachhaltigen Verkehrs ist die effiziente Nutzung der eingesetzten Energie in Form der Endenergieträger Diesel, Benzin, Flüssig- oder Erdgas, Kerosin und Strom sowie die Nutzung alternativer Antriebe und klimaverträglicher alternativer Kraftstoffe. Informationen hierzu finden Sie im Artikel <a href="https://www.umweltbundesamt.de/daten/verkehr/endenergieverbrauch-energieeffizienz-des-verkehrs">„Endenergieverbrauch und Energieeffizienz des Verkehrs“</a>. Darüber hinaus sind nicht-technische Maßnahmen und entsprechende Rahmenbedingungen erforderlich, um Verkehr erstens zu vermeiden und um zweitens vor allem im Personenverkehr die Nutzung umweltfreundlicherer Verkehrsmittel oder Mobilität mit weniger Verkehr zu fördern (siehe Artikel <a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/mobilitaet-privater-haushalte">„Mobilität privater Haushalte“</a>).</p><p>Endenergieverbrauch steigt seit 2010 wieder an</p><p>Grund für den Anstieg bis 2019 war die starke Zunahme der Verkehrsleistungen im Personen- als auch im Gütertransport auf der Straße, welche die technischen Verbesserungen an den Fahrzeugen überkompensierten. Im Jahr 2023 lag der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> im Verkehr über dem Verbrauch der pandemiegeprägten Vorjahre, jedoch noch unter dem Verbrauch von 2019 (siehe <a href="https://www.umweltbundesamt.de/daten/verkehr/fahrleistungen-verkehrsaufwand-modal-split">Fahrleistungen, Verkehrsleistung und Modal Split</a> und <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-endenergieverbrauch-des-verkehrs">Indikator: Endenergieverbrauch des Verkehrs</a>).</p><p>Kraftstoffe dominieren</p><p>Im Verkehrssektor entfielen 2023 etwa 97,8 % des Verbrauchs an <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergie#alphabar">Endenergie</a> auf Kraftstoffe und rund 2,2 % auf Strom. Der Verbrauch an Kraftstoffen verteilte sich im Jahr 2023 – bezogen auf den Energiegehalt (ohne Strom) – rund 28 % auf Benzin, 48 % auf Diesel, 16 % auf Flugkraftstoffe und 0,3 % auf Flüssig- und Erdgas. Biokraftstoffe haben einen Anteil von 5,2 % (siehe Abb. „Entwicklung des Endenergieverbrauchs nach Kraftstoffarten“).</p><p>Seit 1995 hat der Verbrauch von Diesel kontinuierlich zugenommen und lag auch 2023 etwa 19 % höher als im Jahr 1995. Analog hat sich der Verbrauch der Vergaserkraftstoffe verringert. Der Verbrauch von Kerosin ist vor allem durch die Zunahme internationaler Flüge gestiegen. Bezogen auf den <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> in Megajoule hatte der elektrische Strom im Schienenverkehr einen Anteil von 75,5 % im Jahr 2023. Diesel als Energieträger im Schienenverkehr sinkt, absolut betrachtet, seit Jahren kontinuierlich.</p><p>Biokraftstoffe</p><p>Seit 1991 werden im Straßenverkehr biogene Kraftstoffe eingesetzt. Es sind derzeit vor allem Biodiesel und Bioethanol, die fossilen Kraftstoffen beigemischt werden. Die <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32009L0028">EU Richtlinie 2009/28/EG</a> zielt vor allem auf Biokraftstoffe, schließt aber etwa die Möglichkeit ein, aus erneuerbarem Strom hergestellten Wasserstoff oder Methan in Fahrzeugen oder Strom in Elektrofahrzeugen zu nutzen (siehe auch: <a href="https://www.umweltbundesamt.de/themen/verkehr/kraftstoffe-antriebe">Kraftstoffe und Antriebe</a> sowie <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/bioenergie#Reststoffe">Bioenergie</a>).</p><p>Elektrofahrzeuge </p><p>Fahrzeuge mit Elektroantrieb bieten eine weitere Möglichkeit, Strom im Straßenverkehr direkt und damit am effizientesten unter den alternativen Energieversorgungsoptionen für Fahrzeuge zu nutzen. So kann die Batterie dieser Fahrzeuge unter anderem mit Strom aus Sonnenenergie, Wind- oder Wasserkraft aufgeladen werden. Der Anteil der erneuerbaren Energien im deutschen Strom-Mix betrug im Jahr 2024 54,4 % (<a href="https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien#entwicklung-in-zahlen">https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien#entwicklung-in-zahlen</a>). Bereits bei diesem Strom-Mix sind Elektrofahrzeuge in der Regel klimafreundlicher als vergleichbare konventionelle Fahrzeuge (<a href="https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Verkehr/emob_klimabilanz_bf.pdf">ifeu 2020</a>). Das Angebot an reinen Elektrofahrzeugen ist in den letzten Jahren deutlich größer geworden und die Nutzbarkeit der E-Fahrzeuge ist durch inzwischen wesentlich größere Reichweiten der aktuellen Modelle deutlich gestiegen. Im Jahr 2023 war etwa jeder siebte neu zugelassene Pkw ein reines Elektrofahrzeug.</p><p>Spezifischer Energieverbrauch sinkt</p><p>Der durchschnittliche Energieverbrauch (inkl. <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Vorkette#alphabar">Vorkette</a>) pro <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsleistung#alphabar">Verkehrsleistung</a> sank von 1995 bis 2023 in fast allen Bereichen des Güter- und des Personenverkehrs (siehe Abb. „Entwicklung des spezifischen Energieverbrauchs im Güterverkehr" und Abb. „Entwicklung des spezifischen Energieverbrauchs im Personenverkehr“). Die Rückgänge im Energieverbrauch pro Verkehrsleistung sind vor allem auf technische Verbesserungen an den Fahrzeugen zurückzuführen. Auch Busse sind effizienter geworden, auch wenn der spezifische Energieverbrauch seit 2010 wieder steigt: der Grund sind sinkende Fahrgastzahlen und damit schlechtere Auslastungen der Fahrzeuge. Im Straßenverkehr wird ab 2019 der Methodenwechsel bei der Vorkettenberechnung sichtbar: die Werte gehen bei den Bussen und Pkw deutlich nach oben. Pandemiebedingte niedrige Fahrgastzahlen waren zudem 2020 und 2021 der Grund dafür, dass bei nahezu allen Verkehrsmitteln der spezifische Energieverbrauch höher lag.</p><p>*inkl. der Emissionen aus Bereitstellung und Umwandlung der Energieträger in Strom, Benzin, Diesel, Flüssig- und Erdgas<br> **schwere Nutzfahrzeuge (Lkw ab 3,5t, Sattelzüge, Lastzüge), ab 2019 Methodenwechsel in der Vorkettenmodellierung, Werte ab 2019 daher nur eingeschränkt mit den Vorjahren vergleichbar.</p><p>*inkl. Emissionen aus Bereitstellung & Umwandlung der Energieträger in Strom, Benzin, Diesel, Flüssig- & Erdgas sowie Kerosin<br> **ab 2019 Methodenwechsel in der Vorkettenmodellierung, Werte ab 2019 daher nur eingeschränkt mit den Vorjahren vergleichbar<br> ***ausgewählte Flughäfen in Deutschland, nur Kerosin</p><p>Kraftstoffverbrauch im Personen- und Güterstraßenverkehr</p><p>Die Verbrauchsentwicklung im Personenverkehr und Güterverkehr zeigt unterschiedliche Tendenzen. In den Jahren 2020 und 2021 kam es aufgrund der pandemiebedingten Einschränkungen zu einer Verringerung des gesamten Kraftstoffverbrauchs, auch 2023 lag der Verbrauch noch unter dem von 2019. Der Kraftstoffverbrauch im Pkw-Verkehr verschob sich seit 1995 kontinuierlich von Benzin zu Diesel. Während der Anteil von Benzin 1995 noch 84 % betrug, sind es mittlerweile 59 %. Der Benzinverbrauch ist entsprechend seit 1995 gesunken, der Dieselverbrauch dagegen gestiegen, stagniert jedoch seit einigen Jahren (siehe Abb. „Kraftstoffverbrauch von Pkw und Kombi“). Der Kraftstoffverbrauch in Litern im Straßengüterverkehr lag 2023 etwas unter dem Niveau von 1995 (siehe Abb. „Kraftstoffverbrauch im Straßenverkehr“).</p><p>Durchschnittsverbrauch bei Pkw stagniert</p><p>Im gesamten Zeitraum 1995 bis 2023 verringerte sich der durchschnittliche Kraftstoffverbrauch um 1,4 Liter pro 100 Kilometer (siehe Abb. „Durchschnittlicher Kraftstoffverbrauch von Pkw und Kombi“). Ein Grund dafür ist die verbesserte Gesamteffizienz der Fahrzeuge, die sowohl Motoren als auch Getriebe und Karosserie betrifft. Seit einigen Jahren liegt der Durchschnittsverbrauch jedoch unverändert bei 7,4 Liter pro 100 Kilometer. Einer Verringerung des Kraftstoffverbrauchs stehen der Trend zu leistungs-stärkeren und größeren Fahrzeugen sowie die zunehmende Ausstattung mit verbrauchserhöhenden Hilfs- und Komforteinrichtungen wie Klimaanlagen entgegen.</p><p>Weiterführende Informationen</p><p><a href="https://bmdv.bund.de/SharedDocs/DE/Artikel/G/verkehr-in-zahlen.html">BMDV: Verkehr in Zahlen</a></p><p><a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32009L0028">Richtlinie 2009/28/EG (Erneuerbare Energien)</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/verkehrsrecht">Verkehrsrecht</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/emissionsdaten">Durchschnittliche Emissionen verschiedener Verkehrsmittel</a></p><p><a href="https://www.umweltbundesamt.de/daten/energie/erneuerbare-energie-im-verkehr">Erneuerbare Energien im Verkehr</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/kraftstoffe-antriebe">Kraftstoffe und Antriebe</a></p>
| Origin | Count |
|---|---|
| Bund | 648 |
| Europa | 5 |
| Kommune | 8 |
| Land | 263 |
| Wissenschaft | 24 |
| Zivilgesellschaft | 15 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 11 |
| Chemische Verbindung | 17 |
| Daten und Messstellen | 8 |
| Ereignis | 11 |
| Förderprogramm | 534 |
| Gesetzestext | 17 |
| Hochwertiger Datensatz | 4 |
| Infrastruktur | 1 |
| Taxon | 14 |
| Text | 114 |
| Umweltprüfung | 37 |
| unbekannt | 186 |
| License | Count |
|---|---|
| geschlossen | 299 |
| offen | 606 |
| unbekannt | 30 |
| Language | Count |
|---|---|
| Deutsch | 856 |
| Englisch | 129 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 18 |
| Datei | 29 |
| Dokument | 143 |
| Keine | 445 |
| Unbekannt | 1 |
| Webdienst | 79 |
| Webseite | 294 |
| Topic | Count |
|---|---|
| Boden | 573 |
| Lebewesen und Lebensräume | 788 |
| Luft | 750 |
| Mensch und Umwelt | 916 |
| Wasser | 468 |
| Weitere | 841 |