Das Projekt "Entwicklung verbesserter Anlagen fuer die Vergasung fester Brennstoffe fuer kostenguenstige Stromerzeugung mit geringen Auswirkungen auf die Umwelt" wird vom Umweltbundesamt gefördert und von Schumacher Umwelt- und Trenntechnik durchgeführt. General Information/Objectives: The aims of the project are: - To establish component development and design criteria for coal/biomass/waste systems. - To support the component development programme through studies of the associated environmental issues. - To establish the techno-economic optimum configurations for IGCC plants for a range of coal/biomass/waste mixtures, leading to a strategic evaluation with competing clean coal technologies. Technical Approach: An engineering evaluation of multi-fuel feeding systems will be undertaken by Carbona. There will be test work on various industrial scale test units to evaluate the operational stability and performance of fluidized bed gasifiers for various co-feedstocks (Carbona, VTT, TU Delft). The impact of such operations on gas quality, particularly pollutants and contaminants, and the effect on downstream components will also be investigated (VTT, CTDD, Schumacher). The subsequent impact of such fuel gas on gas turbine combustor performance will be evaluated, with emphasis on design issues and materials selection (Nuovo Pignone). The supporting and environmental studies will include laboratory scale investigations of synergetic effects in co-gasification, the minimization of NOx precursor formation and trace elements characterization (TPS, KTH, Imperial College, CRE Group). These practical studies will be underpinned by a determination of the techno-economic optimum configuration of IGCC plant for various coal/biomass/waste mixtures (Univ. Ulster). This will be followed by a strategic evaluation of competing clean coal technologies drawing on data from a range of projects within this and earlier phases of the JOULE programme (University Ulster). Expected Achievements and Exploitation: The outputs of the project are: - Techno-engineering optimization of coal/biomass/waste feeding systems. - Process design data and operational specifications for various coal/biomass/waste mixtures. - Preliminary risk assessment on downstream component degradation. - Preliminary design of the gas turbine combustor gas arising from co feedstock utilization. - Techno-economic assessment of IGCC systems. - Comparative assessment on a common basis of the competitiveness of IGCC with alternative clean coal technologies. The programme will aid industrial partners to support their technology demonstration and exploitation plans and to build up the various technology data bases. There will also be the opportunity for establishing technology transfer initiatives, including training and information exchange. Prime Contractor: CRE Goup Ltd., Environmental and Industry Group; Cheltenham/UK.
Das Projekt "Optimierung der Landnutzung bezueglich des Grundwasserschutzes in bergigen Gebieten mit Hartgestein" wird vom Umweltbundesamt gefördert und von Universität München, Institut für Allgemeine und Angewandte Geologie durchgeführt. Objective/Problems to be solved: The objective of the project is to assess the degree of interference of anthropogenic activities with the hydrosphere in mountain regions. For this purpose, six regions have been selected. Analyses of various factors of agricultural, industrial activities affecting the hydrosphere will permit to assess the efficiency of imposed measures to protect the hydrosphere. The investigation will be carried out on two scales: detailed and regional. This study will also consider the results of monitoring and earlier data filed in archives, which would allow to reconstruct the evolution of hydrosphere in studied regions during the last 40 years. The modelling will allow to simulate various alternatives in term of landscape-use leading to an optimum one from the viewpoint of water management. Scientific objectives and approach: Results of this work must permit to predict the influences on water (in quantity and in quality) of various landscape-use scenario, in order to give a preference for the choices in land-planning , compatible with a sustainable development. Our project will focus on the following topics: -to identify and solve the correlation between individual factors which influence the quality and volume of water resources in mountain areas. - suggestions for optimum local development from the viewpoint of groundwater protection. Partial output of this work will be the assessment of efficiency of implementation of E.U. and national directives on groundwater protection. - The ultimate objective of the LOWRGREP project is the creation of the ECEMEWAM system (European Centre for Mutual Exchange of Experience in Water management in Mountain Regions) which will lead to a set up of project's own WWW pages. This will provide all data on optimum exploitation from the view-point of groundwater protection (general information) and data from yet studied areas to any client interested in the problem. In the case of some very specific issue, the client will be offered to contact an appropriate specialist. The first stage involves collection of all environmental data, their transfer into electronic form and their preliminary processing using a Geographical Information System. The second stage consists in monitoring catchments with two different scales (local and regional).A model will be built up in order to describe the water balance and the trends in water quality under various conditions. The final stage is the design of a software, HYDRODESUSMA: Hydrogeological Decision Support System in Mountain Areas; this software is aimed at the presentation and analysis of all the obtained data and knowledge in user-friendly form that can be easily interpreted by potential users... Prime Contractor: Association pour la recherche et le developpement des methodes et processus industriels, laboratoire geotechnique, exploitation, ressources, mineralogie; Ales/France.
Das Projekt "PV hybrid systems for 5 remote sites in the german alps" wird vom Umweltbundesamt gefördert und von Deutscher Alpenverein e.V. durchgeführt. Objective: Photovoltaic, hybrid electricity supplies for five different sites in the German Alps. The mountain huts are not connected to the grid. Lightning protection of the systems is a major concern. Economic operation and reduced ecological pollution are aims of the project. General Information: Five remote sites are equipped with PV generators for lighting, household appliances, communication equipment and water pumping. The auxiliary generators are foreseen to operate only if the demand cannot be met by the pv part. In the four small installation the inverter operates only on demand of 220 V ac load. The two larger systems use a special transformerless inverter (developed for the project SE/134/83, Rappenecker Hof), which is operating continuously. 'Global monitoring' is made for the small installations, and 'Analytical monitoring' for the two larger stations. Nr. of subsystems: 5 Power of subsystems: 900, 1000, 1040, 5000, 5400 Wp Total power: 13,3 kWp Backup: Diesel, gas (and wind at one site) Number of modules: 266 Module description: 20 Siemens SM50 (Purtscheller) and 152 AEG PQ36/45 (Brunnstein, Meiler, Mindelheim) and 94 TST MQ36D/53 (Watzmann). Connection: 24 V (for systems smaller than+ 1 kWp) or special Support: special mounting (no holes in the roof) on the sheet metal roofs Max power tracker: none Charge controller: special design by Uhlmann Solarelectronic, IBC Battery: Bayern, Fiamm, Hoppecke, Hagen Batt. (V): 24 V for systems smaller than= 1kWp; special connection for the 2 large systems Capacity (Ah): 100 and 150 Ah at 162 V, 500 and 600 Ah at 24 V. Inverter: Special transformerless inverter at two sites. (Watzmannhaus and Mindelheimer Huette) with 10 kVA each of FhG-ISE (sinusoidal). At two other sites (Purtscheller and Brunnstein): 'Al-elektronic' (trapezoidal) with 1.6 kVA each. At Meiler Huette: 'Sunpower' 2 kVA (sinusoidal). Load description: For lights: fluorescent lamps for 24 V and 230 V. Water pump. Low consumption household appliances, freezers, refrigerators, dish washers ecc. Monitoring: 'Global' for the 4 small systems, 11 data, daily, manual reading of mechanical meters. 'Analytical' for the two larger systems: data, hourly averages stored in data logger.
Das Projekt "Waste heat utilization of a blast furnace by the use of a heat pump" wird vom Umweltbundesamt gefördert und von Krupp Hoesch Stahl durchgeführt. Objective: To utilize the waste heat of blast furnace using a heat pump. The temperature of the coolant circuits is 57 deg. C which is raised to 90 deg. C by means of a heat pump and so waste heat is fed into the existing hot water heating networks. It is expected to achieve a 2265 TOE//year energy saving at project level. Payback time estimated at 3.1 years. In case of success, this technology could be transferred to about 100 blast furnaces in the Community, corresponding to an available waste heat potential of about 885 000 TOE/year. General Information: Blast furnaces are generally cooled by three cooling water circuits: the circuit for cooling the blast tuyerers, the hot blast slide valves, and the staves. About 42 GJ/h of waste heat are dissipated today unutilized by the water/air cooling systems. The cooling water temperature at the blast furnace No 7 of the Hoesch Stahl AG is about 57 deg. C, and the heat pump proposed to be installed will raise the temperature level at 90 deg. C, and feed the waste heat into the existing hot water heating networks. The heat pump will be powered by a back pressure turbine. With this turbine the unutilized steam energy (enthalpy) of the reduction station between the existing 33 bar and 12 bar steam network can be utilized. The first step of the project is to combine the separately operated heating centers. After the installation of the heat pump unit and the integration of the heating centres, the heat pump will supply the hot water network with heat. The construction costs are estimated at 3.8Million DM (year 85). Costs reduction of up to 20 per cent are expected for units of this type. In addition to the energy saving the annual operating and maintenance costs will decrease significantly by establishing a central hot water network. Compared to the units operating today, a saving of about 225 000 DM (year 85) is taken into account for operating and maintenance costs.
Das Projekt "Use of Geothermal Water to heat a Recreational Resort in Weiden (Bavaria)" wird vom Umweltbundesamt gefördert und von Stadt Weiden i. d. OPf. durchgeführt. Objective: To use geothermal water for thermal spa applications and sauna in a recreational resort centre to be built in Weiden. The reservoir at 1300 m depth is made of detrital formations overlying granitic and gneissic basement. Expected flow rate is about 18 m3/h of drinking water at 35 degree of Celsius. Water will be treated and filtered before use in baths to avoid Fe and Mn oxydes. Well drilling will be realized close to the resort site to have the shortest distribution network possible. General Information: The well was drilled to a final depth of 1459,75 m between November 88 and September 89. It was fitted with 7 5/8' casing down to 960 m. Two sections (583-797 m and 851-941 m) were left free from cementation for later tapping measures (perforation). At a depth of 1230 a hydro carbonaceous zone has been struck. Oil tests and loggings were done and the cored interval for the installation of casing had to be enlarged. After completion of the oil tests the oil bearing zone has been sealed by installation of a 159 mm casing down to 1224 m. Mud loss occurred between 1309 and 1319 m and between 1383 and 1389. Pumping tests in the open hole showed a flow rate of 0,05 l/s at 150 m depression. To get a sufficient output higher aquifers (857-933 m and 608 - 753 m) were tapped by perforation. Long time pumping tests were carried out (November, December 1990) out and showed an output of about 7,2 m3/h at about 23 degree of Celsius. Achievements: This project encountered difficulties when the drilling crossed an hydro carbonaceous zone. (0,4 m3 of oil has been produced). This problem led the operator to cement the lowest part of the drilling and to produce water from a shallower reservoir with both low temperature and flow rate. The well is exploited at 6,5 m3/h - 23 degree of Celsius. The discharge temperature is 14 degree of Celsius and the power of 106 kWht. Annual energy savings expected are 65 TOE.
Das Projekt "Use of geothermal water for bathing and district heating purposes in bad walsee" wird vom Umweltbundesamt gefördert und von Stadtverwaltung Bad Waldsee durchgeführt. Objective: The aim of the project is to extract thermal water from an undisturbed area of the Upper Jurassic (Malm), which will then be used to supply the municipal spa facilities of Bad Waldsee. The unsatisfactory result obtained by the well GB Bad Waldsee 2 which had been sunk in 1985 justified the drilling of a second geothermal well in the Upper Jurassic. After comprehensive planning work this well was sunk in the year 1992. General Information: This project is a follow-up project to the geothermal project Bad Waldsee which started in 1985. The scope of the project includes the drilling of a large well in the Upper Jurassic, the testing of the thermal water aquifer to be developed and the well completion required to extract thermal water. The well GB Waldsee 2 has been drilled successfully down to the Malm formation, according to the drilling and casing programme. At the final depth (1970 m) and well equipment a final long term pumping test has been carried out on the second half of 1992. The preliminary results indicate a maximum pumping flow rate of 18 m3/h at 68 degree of Celsius temperature. Achievements: The final report including the definitive results (productivity of the well) will be terminated mid 1993. According to the 'definitions of terms for spas results and mineral springs' established by the German Tourist Association, the water extracted is classified as a 'fluoride and sulfure containing thermal water' and thus be used for balneological and therapeutical applications in the spa faclities of Bad Waldsee. The geothermal water will be utilized for bathing purposes, to produce hot water and to feed an existing gas heat pump in the control district heating station.
Das Projekt "Heat recovery in the production of phosphoric acid" wird vom Umweltbundesamt gefördert und von BK Ladenburg GmbH durchgeführt. Objective: The combustion of yellow phosphorus generates 24,350 kJ of heat per kg of the substance. The large-scale production of phosphoric acid involves the combustion of yellow phosphorus. The considerable amounts of heat generated in this process have been evacuated by means of cooling water. The project suggests to utilize this heat, in the future, for the generation of steam and to have it converted into electric power. This process-heat recovery enables considerable savings of primary energy (coal, oil, gas). General Information: The heat generated by the large-scale combustion of phosphorus is absorbed, in an acid tower, by recirculating acid. The recirculating acid then releases the heat previously absorbed into a heat exchanger (cooling water). The amounts of heat thus transferred are subsequently released, mainly in the form of steam, from the cooling tower into the atmosphere. Now, the new method suggests an upstream combustion chamber before the acid tower, thus utilizing a major part of the heat generated in the combustion of yellow phosphorus for the production of energy. The new method represents an energy-recovery process on a very high temperature level, with the possibility to produce high-pressure to medium-pressure steam with subsequent power/heat coupling. The estimated energy generation, at 8000 hours, would be as follows: Steam 15 t/h = 120,000 t/a with steam-pressure reduction from 80 bars/550 degree of Celsius to 40 bars/450 degree of Celsius. Electric power: 550 kWh = 4,400 mWh/a. Achievements: The project cannot be carried on, for the following reasons: - The capital expense (investment), in view of the actual cost level, will be approx. 30-40 per cent higher than estimated at the time of submission. - The capital payback period, due to the price decline for primary energy, will be excessively long (7 years); longer than there is an assured supply of phosphorus. - Since 1985, in view of a modified strategy, our company has increased its efforts to manufacture speciality products rather than to produce mass phosphates (commodities); this will lead to a reduced demand of phosphorus in the future. - A drastic collapse, since early 1986, in the sale of phosphate salts used in washing powers, detergents, and cleaning agents, will further reduce the amounts of phosphorus needed in the manufacture of our product line. - A major aspect of the project was the purchase of energy by Joh. A. Benckiser, with whom we have a joint network. Joh. A. Benckiser are no longer prepared to purchase any such energy.
Das Projekt "Exploitation of geothermal energy by doublet for bathing and heating purposes in Straubing - Phase 1 -" wird vom Umweltbundesamt gefördert und von Stadtwerke Straubing GmbH durchgeführt. Objective: To produce geothermal energy to heat a resort centre, baths, sanatoria, schools and buildings in the town of Straubing in Niederbayern. The well has been drilled at 824 m into Malm limestone will be exploited at 180 m3/h flow rate and 35,6 deg. C. 10 per cent of the production for direct supply to brine pools at the existing health resort. The remaining hot water via heat pump will be used for heating purposes and sanitary hot water production. The drilling of an injection well 2 km apart (162 m3/h at 5 deg. C.) is necessary to maintain a sufficient pressure in the reservoir. One of the first geothermal doublet to exploit the Malm reservoir in south Bavaria. General Information: See results. Achievements: The Malm aquifer was found at 708 m and bored until the final depth of 824,8 m. Water bearing (confined water) karstic cavities have been found between 730 and 746 m. The drilling had to be carried out under permanent overflow (126 m3/h at 35 deg. C.). After the end of drilling one output and one long- time pumping test have been carried out. The output pumping test (13.08. - 20.08.90) showed a specific productivity index of 1,8 m3/h/m. The accompanying hydrochemical and isotope-chemical investigation programme showed that the water is a fluoridic sodium chloride-hydrogen carbonate thermal with a total mineralization of 1325 mg/l. The sampling temperature was between 35 and 36 deg. C. A dependance between water output and water quality could not be determined. The long-time pumping test (28.08. - 02.10.90) has been run at a constant pumping planned output during operation. At the end of the pumping test the depression was stabilized at 78 m. With regard to the water quality no changes could be determined compared with earlier analyses.
Das Projekt "PV hybrid systems for three remote houses" wird vom Umweltbundesamt gefördert und von Fraunhofer-Gesellschaft FhG, Abteilung für Forschungs- und Budgetplanung durchgeführt. Objective: This project demonstrates three photovoltaic hybrid (wind, Diesel, gas) systems, with continuous AC energy supplied by an inverter. All three sites are far away from the grid. General Information: Three different subsystems at three different sites. A common feature is newly developed indicator of the state of charge of the battery. This indicator allows economic energy management and optimized use of the auxiliary generator. All three subsystems have the same type of special inverter (ISE design) to supply 220 V AC. In the new version of the ISE inverter it is sufficient to have one battery with the full tension of 162 V; the other dc tensions, 84, 42, 24 and 12 V are generated by a DC/DC converter. (Patented system). 1) The Grimmelshofen system, 1.76 kWp, on a private house, a former railroad signal house, has a Diesel/gas auxiliary generator. The PV arrays are mounted on the roof of the house. 2) The Rotwandhaus system, 5 kWp, on a guesthouse in the bavarian Alps near Spitzingsee, has a wind auxiliary generator (20 kWp turbine). The PV arrays are mounted on the roof. 3) The Bognago system, 4.32 kWp, on a site of several isolated guest huts, has a hydro electric generator, 5 kW for the main house supply (household appliances, water pump). This system has also a Diesel/gas auxiliary generator. Nr. of subsystems: 1 + 1 + 1 Power of subsystems: 1.76 + 5.1 + 4.32 kWp Total power: 11 kWp Backup: Diesel (+wind + hydro) Number of modules: about 240 TST (AEG) Module description: AEG PQ 36/45 and Italsolar 36 SL/A Connection: 12 in series Support: On the roof (Rotwandhaus), roof integrated (Langer and Bognago) Max power tracker: none Charge controller: special Battery: HAGEN Batt. (V): 162 (168 Langer) Capacity (Ah): 1 x 75 Ah (OGI) and 1x37.5 Ah (OpzS) at 168 V for Langer house, 400 Ah at 162 V, type Hagen OCSM, for Rotwandhaus, 200 Ah at 162 V, type FIAMM PMF, for Bognago. Inverter: special (ISE design transformer less inverter with DC/DC converter for all three systems, 10 kW. Load description: Household appliances, Dishwater, washing machine, refrigerator, freezer, TV, lights, and water pump. Monitoring: Data logger for 11 main parameters with integrators for mechanical backup. Achievements: The system in the Langer-house works perfectly, satisfying the seasonal needs of the Langer family. The final yield over nine months is 1.3 kWh/(d x kWp) at a reference yield of 3.5 kWh/(d x kWp). The battery and the inverter have both high efficiency. The Rotwandhouse system is operating since September 92. Of the 11.3 MWh totally produced in 1993 3.4 MWh are of pv origin, 2.4 MWh of wind origin and 5.5 MWh are Diesel generated. The final yield for the pv supply was 1.6 kWh/(d x kWp) at a reference yield of 3.8 kWh/(d x kWp). At Bonago, operating since September 1991, the consumption is much higher than expected. The pv systems works correctly, but the motor generator fraction is high. From the whole project many valuable lessons were learned,...
Das Projekt "Operation of a large heat pump installed in the return pipe of a district heating system" wird vom Umweltbundesamt gefördert und von EAB Fernwärme GmbH durchgeführt. Objective: To build a 10 MW heat-pump which, linked to the Berlin urban district heating network, will take advantage of the heat still contained in the heating water returning to the city's power plant. General Information: The current Berlin BEWAG heating system provides hot water at 105 degree of Celsius. for the local network. After use the water returns to the power plant with a temperature of about 50 degree of Celsius. depending on the outside temperature. The project covers the construction of an industrial size heat-pump on the return network of the above urban heating system. The heat-pump will have a capacity of 10 MW and generate 35,000 MWh on the basis of an annual operation of minimum 3,500 hours at full capacity. 10,000 MWh will be fed back in the current system to save heating fuel and 25,000 MW will be used to feed an extension of the network. The project consists of 4 phases: 1. Planning 2. Construction 3. Commissioning 4. Measurement and Operation The project would be deemed successful if 2 x 25,000 MWh can be delivered during phase 4.
Origin | Count |
---|---|
Bund | 402 |
Type | Count |
---|---|
Förderprogramm | 402 |
License | Count |
---|---|
offen | 402 |
Language | Count |
---|---|
Deutsch | 402 |
Englisch | 389 |
Resource type | Count |
---|---|
Keine | 346 |
Webseite | 56 |
Topic | Count |
---|---|
Boden | 305 |
Lebewesen & Lebensräume | 315 |
Luft | 249 |
Mensch & Umwelt | 402 |
Wasser | 263 |
Weitere | 402 |