API src

Found 5478 results.

Similar terms

s/risikanalyse/Risikoanalyse/gi

Ermittlung des Potenzials schädlicher Phytoplankton-Massenentwicklungen in Bundeswasserstraßen

Veranlassung Die aktuellen, trockenen Jahre haben gezeigt, dass an den Bundeswasserstraßen im Binnenland und den Ästuaren in Zeiten des Klimawandels wieder vermehrt mit Eutrophierungs-Phänomenen zu rechnen ist. Das Fischsterben in der Oder, ausgelöst durch das verstärkte Wachstum der Alge Prymnesium parvum und der von ihr gebildeten Toxine, die mittlerweile regelmäßig auftretenden Cyanobakterienblüten an der Mosel oder auch die wieder verstärkt auftretende Sauerstoffproblematik in vielen Fließgewässern wie z. B. der Elbe sind die prominentesten Beispiele dieser Entwicklung (Abb. 1). Nicht nur in den Medien, der Öffentlichkeit und in der nationalen und internationalen Politik, auch bei den verwaltenden Behörden wie den Landesämtern oder der Wasserstraßen und Schifffahrtsverwaltung des Bundes erregt dieses Thema große Aufmerksamkeit und Besorgnis. Eutrophierung ist eines der zentralen Wasserqualitätsprobleme, die in der Nationalen Wasserstrategie der Bundesregierung benannt werden. Ihre Vermeidung, insbesondere im Ästuar- und Küstenbereich, ist „Vision“ der Nationalen Wasserstrategie und entspricht dem nationalen Umweltziel 1 aus der Umsetzung der Europäischen Meeresstrategie-Rahmenrichtlinie. Die Gründe für diese Eutrophierungsphänomene liegen in den ungewöhnlich langen, trockenen und warmen Wetterperioden in den Frühjahrs- und Sommermonaten der vergangenen Jahre. Diese führen nicht nur zu einem Anstieg der Wassertemperatur und ausreichender Lichtverfügbarkeit, auch der Abfluss in den Bundeswasserstraßen nimmt ab, während die Aufenthaltszeit des Wassers gerade in staugeregelten Bereichen ansteigt. All diese Faktoren sind wachstumsfördernd für Algen und Cyanobakterien. Durch den geringen Abfluss werden zudem eingeleitete Substanzen nicht mehr ausreichend verdünnt. Im Falle der Oder führten durch den Bergbau eingeleitete Salze erst dazu, dass die Brackwasseralge Prymnesium parvum ein ideales Habitat vorfand. Es besteht daher starker Bedarf, solche Kipppunkte von Gewässern frühzeitig zu erkennen und über ein Monitoringprogramm im Krisenfall die Handlungsfähigkeit der zuständigen Behörden zu verbessern. Dazu ist es zunächst notwendig, das Potenzial der Bundeswasserstraßen für die Massenentwicklung von schädlichen Algen und Cyanobakterien zu evaluieren und damit zu klären, an welchen Bundeswasserstraßen das Risiko für schädliche Algenblüten besteht. Es gibt verschiedene Algen, andere Protisten und Cyanobakterien, die das Potenzial schädlicher Auswirkungen auf das Ökosystem und die menschliche Gesundheit haben. Die Nischen oder Habitate, in denen diese Arten vorkommen sind zwar begrenzt, es ist jedoch nachgewiesen, dass durch den Menschen verursachte Phänomene (Klimawandel, Einleitung von Nährstoffen und Salzen) die Ausbreitung schädlicher Algen befördern und es dadurch zu massenhaften Entwicklungen dieser kommt. Es ist nicht bekannt, in welchen der Bundeswasserstraßen mögliche Habitate für diese schädlichen Organismen derzeit bestehen oder auch in Zukunft unter einem Klimawandelszenario entstehen könnten. Diese Lücke soll in diesem Projekt geschlossen werden. Ziele - Identifizierung der TOP10 HABs (engl. „Harmful Algae Blooms“ = schädliche Algenblüten), also der 10 Arten, die am wahrscheinlichsten in großen Fließgewässern eine schädliche Algenblüte bilden und Charakterisierung ihrer Umweltanforderungen - Erstellung und Veröffentlichung von Steckbriefen der TOP10 HABs - Zusammenstellung von Umweltdaten für eine Risikoanalyse schädlicher Phytoplankton-Massenentwicklungen - Analyse des trophischen Potenzials der Bundeswasserstraßen, d. h. der theoretischen Möglichkeit für eine Phytoplankton-Massenentwicklung in den Bundeswasserstraßen.

Gefährdungspotenzial Wärmebelastung

Gefährdungspotenzial durch Wärmebelastung Für die Landeshauptstadt Dresden wurde ein Klimaanpassungskonzept erarbeitet, dass die Klimaveränderungen und dessen Folgen in Dresden aufzeigt. In diesem Rahmen wurden Gefährdungsanalysen für die Dresdner Stadtteile erstellt. Das Gefährdungspotenzial ergibt sich aus der Sensitivität eines Systems bezüglich der Klimaveränderung und der Exposition (Lage im Stadtraum). Für die Analyse standen die menschliche Gesundheit, Gebäude und Infrastruktur im Fokus. Gefährdungspotenziale wurden für die Themen Wärmebelastung sowie die Überschwemmungsgefahr durch Starkregen und Flusshochwasser untersucht - hier Wärmebelastung. In die Analyse zur Wärmebelastung flossen die Überwärmung im Stadtgebiet nach Klimafunktionskarte ein, die Einwohnerzahl, die besonders hitzevulnerablen Altersgruppe der null bis 14-Jährigen, der über 65-Jährigen und der über 75-Jährigen ein sowie der Anteil der Arbeitslosen. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung bewerten und die Maßnahmenentwicklung und -umsetzung priorisieren zu können. Weitere Informationen zur Gefährdungsanalyse und möglichen Anpassungsoptionen sind dem Klimaanpassungskonzept zu entnehmen. Die Gefährdungsanalyse wurde im Rahmen der Erstellung des Klimaanpassungskonzeptes vom Thüringer Institut für Nachhaltigkeit und Klimaschutz (ThINK) durchgeführt. Die Übersicht der Gefährdungspotenziale der Stadtteile ist eine wichtige Grundlage, um den Handlungsbedarf zur Anpassung in den verschiedenen Bereichen bewerten zu können. Mit Hilfe der Analyse kann die Maßnahmenentwicklung und -umsetzung priorisiert werden.

Sicherheitstechnische Überprüfung aus Anlass der beantragten Übertragung von Reststrommengen

Im Rahmen des Atomausstiegs sind Reststrommengen für die in Deutschland betriebenen Kernkraftwerke festgelegt worden. Das Kernkraftwerk Biblis, Block A, wird die vereinbarte Reststrommenge in absehbarer Zeit erreichen. Die RWE Power AG hat die Übertragung von Strommengen aus dem Kernkraftwerk Emsland (KKE) auf KWB-A beantragt, um einen gemeinsamen Weiterbetrieb der beiden Kraftwerksblöcke am Standort Biblis zu ermöglichen. KWB-A gehört zu den ältesten in Deutschland betriebenen Kernkraftwerken. KKE gehört zu den modernsten Anlagen. Im Zusammenhang mit der Prüfung des Antrags durch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) wird auch eine sicherheitstechnische Prüfung durchgeführt. Anhand ausgewählter Themen sollen sicherheitstechnisch bedeutsame Unterschiede zwischen den beiden Anlagen identifiziert und vergleichend bewertet werden. Der Schwerpunkt liegt dabei auf einer Gegenüberstellung unterschiedlicher Sicherheitsreserven der beiden Anlagen. Diese Aufgabenstellung weicht von der für übliche Sicherheitsanalysen ab. Eine geeignete Methodik muss daher begleitend zur Prüfung entwickelt und abgestimmt werden. Der Auftrag wird in Zusammenarbeit mit der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH und dem Physikerbüro Bremen sowie in enger Abstimmung mit der zuständigen Fachabteilung im BMU durchgeführt. Ein zweiter Abschnitt des Projektes ergibt sich aus dem Antrag der EnBW Kernkraft GmbH, Reststrommengen vom Kernkraftwerk Neckarwestheim 2 - einem der modernsten Kernkraftwerke in Deutschland - auf das wesentlich ältere Kernkraftwerk Neckarwestheim 1 zu übertragen. Auch hier wird mit der gleichen Methodik wie im ersten Abschnitt eine sicherheitstechnische Überprüfung durchgeführt.

Modellierung von Transferpfaden

Fuer das Verhalten organischer Schadstoffe im System Boden-Pflanze-Luft wurde ein auf einem Massenbilanzmodell basierendes Transfermodell entwickelt und fuer verschiedene Chemikalien (PCDD/F, Pestizide u.a.) verifiziert. Das Modell hat Eingang in die europaeische Risikorichtlinie, die multimediale Modellierung und die Expositionsanalyse von Altlasten gefunden. Insbesondere konnten die Beitraege von Wurzelaufnahme und atmosphaerischer Deposition zur Kontamination von Pflanzen als Funktion der Stoffeigenschaften geklaert werden. QSAR-Beziehungen zwischen der chemischen Struktur und der oekotoxischer Wirkung von chemischen Substanzen unterschiedlicher Strukturklassen auf Gefaesspflanzen konnten durch multivariate Methoden, u.a. Fuzzy-Clustering, ermittelt werden.

Ermittlung der Baumvitalität entlang von Schienenwegen mit Fernerkundung und dendroökologischen Analysen und deren Multiplikatoreffekt für Risiken durch andere Naturkatastrophen, Teilvorhaben: Friedrich-Alexander-Universität Erlangen-Nürnberg

Wachstumsmonitoring im borealen Wald: Das Stammdickenwachstum von Fichte, Kiefer, Aspe und Birke im Jahresverlauf - Wann beginnt es, wie ist der Verlauf, wann endet es?

In Kooperation mit Partnern aus Russland und Finnland haben wir in einem naturnahen Mischbestand in der mittleren Taiga in NW-Russland (forstliche Versuchsstation Lyaly, Republik Komi) eine ökologische Freilandmessstation installiert. Dort werden die Radialveränderungen der Baumschäfte von Fichten (Picea obovata), Kiefern (Pinus sylvestris), Aspen (Populus tremulus) und Birken (Betula spec.) mit Punkt-Dendrometern zeitlich hochaufgelöst registriert. An einem Teilkollektiv der Untersuchungsbäume wird zusätzlich die elektrische Leitfähigkeit der Baumstämme kontinuierlich gemessen. An der Messstation ist auch ein Magnetometer installiert, der Änderungen im Erdmagnetfeld aufzeichnet. Mit dieser speziellen Messeinrichtung ist es möglich, Auswirkungen von Schwankungen des Erdmagnetfeldes auf die Hydrologie und das Baumwachstum zu erkennen und zu analysieren. Das Wachstumsmonitoring liefert Informationen über die Bedeutung verschiedener Standorts- und Umweltfaktoren auf das kurz-, mittel- und langfristige Wuchsverhalten der Bäum im borealen Wald. Damit werden wichtige Grundlagen für die Abschätzung der Potenziale und Risiken vorhergesagter Umweltveränderungen geschaffen.

XUMA - Expertensystem Umweltgefaehrlichkeit von Altlasten

Standorte mit Altablagerungen haeuslicher, industrieller und gewerblicher Abfaelle sowie Flaechen ehemaliger Industrie- und Gewerbebetriebe, bei denen der begruendete Verdacht besteht, dass von ihnen Gefahren bzw. Beeintraechtigungen fuer die menschliche Gesundheit oder Umwelt ausgehen koennen, werden Altlasten genannt. Aktuellen Schaetzungen zufolge gibt es in der Bundesrepublik Deutschland mehr als 100000 Altlasten, von denen etwa 20000 als sanierungsbeduerftig angesehen werden. Es ist damit zu rechnen, dass in den naechsten 10-20 Jahren fuer die Sicherung und Sanierung von Altlasten ein zweistelliger Milliardenbetrag aufgewendet werden muss. In verschiedenen Bundeslaendern laufen Programme, um die Altlasten systematisch zu erfassen und hinsichtlich ihrer Umweltgefaehrdung zu untersuchen und zu beurteilen. Um die mit der Untersuchung und Beurteilung befassten Fachleute zu unterstuetzen, wird vom Institut fuer Angewandte Informatik des Kernforschungszentrums Karlsruhe und vom Institut fuer Boden, Abfall, Altlasten der Landesanstalt fuer Umweltschutz Baden-Wuerttemberg (LfU) in einem gemeinsamen Vorhaben das Expertensystem Umweltgefaehrlichkeit von Altlasten (XUMA) entwickelt (1)(2),(3). Seit Anfang 1993 beteiligt sich das Forschungszentrum Rossendorf an der Weiterentwicklung des Systems. Das Expertensystem XUMA unterstuetzt Fachleute in Behoerden und Ingenieurbueros als intelligenter Assistent und entlastet sie von Routinearbeiten. Das Wissen der wenigen Fachexperten auf diesem Gebiet wird den Sachbearbeitern leichter zugaenglich und die Erfahrungen aus den Sanierungen sowie andere neue Erkenntnisse koennen unverzueglich in die Beurteilungen einfliessen. Daneben traegt das System zur Vereinheitlichung des Vorgehens sowie der Beurteilungskriterien bei.

Forschergruppe (FOR) 2416: Space-Time Dynamics of Extreme Floods (SPATE), Teilprojekt: Atmosphärische Ursachen extremer Hochwasserereignisse

Die Ziele dieses Teilprojektes sind das bessere Verständnis der Ursachen extremere Hochwasserereignisse, die Einschätzung möglicher zukünftiger Hochwasserextremereignisse und die Untersuchung der Vorhersagbarkeit dieser Ereignisse. Dies soll aus der Perspektive der Vielzahl beteiligter atmosphärischer Prozesse und ihrer Skalenvielfalt durchgeführt werden. Daher wird dieses Teilprojekt wichtige Beiträge in der Forschergruppe SPATE liefern. Unter diesen generellen Zielen wollen wir folgende Forschungsfragen adressieren: 1. Was sind die großskaligen atmosphärischen Vorbedingungen für extreme Hochwasserereignisse? 2. Welche Prozesse verstärken den Niederschlag und die Niederschlagswirkung regional/lokal und verursachen dadurch extreme Hochwasserereignisse? 3. Was sind die raumzeitliche Variabilität und die Klimazukunft dieser atmosphärischen Faktoren und was sind ihre Antriebsfaktoren im Klimasystem? Die beiden ersten Fragen sollen in der ersten Phase (PH1, Monate 1 bis 36) der Forschergruppe SPATE bearbeitet werden. Die dritte Frage soll in Phase 2 bearbeitet werden. Zusätzlich sollen atmosphärische Felder, wie beispielsweise Niederschlag, und abgeleitete Indikatorzeitserien für andere Teilprojekte auf Basis einer über 100jährigen Reanalyse, meteorologischer Beobachtungen und Klimasimulation bereitgestellt werden. Der Forschungsplan der ersten Phase besteht aus drei Arbeitspaketen. Bevor die meteorologischen Ursachen extremer Hochwasserereignisse systematisch untersucht werden können, ist die Erstellung einer langzeitlichen (hier über 100-jährigen) vier-dimensionalen meteorologischen Referenz notwendig (Arbeitspaket 0). Die Referenz basiert auf aufbereiteten Niederschlagsdaten, raumzeitlich (mit dem Modell COSMO-CLM) verfeinerten (auf 12 km Gitterdistanz) Reanalysen (ERA-20C ab 1901, NOAA/NCEP 20 CR für den Zeitraum 1851 bis 1900). Diese Referenz erlaubt eine robuste Statistik der Hochwasser-Wetterlagen-Beziehungen und des Verfolgens der Feuchte im atmosphärischen System (Arbeitspaket 1). Regionale und lokale den Niederschlag verstärkende Faktoren (wie Bodenfeuchte-Niederschlagswechselwirkung, frontale/orographische Hebung mit/ohne konvektive Aktivität) werden in Arbeitspaket 2 mit konvektionserlaubenden Simulationen (Gitterdistanzen kleiner als 2 km) mit COSMO-CLM untersucht. In der zweiten Projektphase planen wir zwei Arbeitspakete. Ein Paket wird die klimatologischen Antriebsfaktoren und die multi-skalige Vorhersagbarkeit bearbeiten. In einem weiteren Arbeitspaket wird die Entwicklung von Hochwasserereignissen aus meteorologischer Perspektive bis in das Jahr 2100 betrachtet. Dieses Teilprojekt wird extreme Hochwasserereignisse und deren Eigenschaften den multiskaligen atmosphärischen Prozessen zuordnen und wird außerdem die Zuordnung hydrologischer Prozesse in der Forschergruppe SPATE unterstützen.

Risikoanalyse zu Exposition gegenüber Fall-out durch sowjetische Kernwaffentests auf Basis des NIIRME-Registers (Risk analysis for exposure to fallout from Soviet nuclear weapons testing based on the NIIRME register)

Abflussprojektionen für die großen Flüsse Deutschlands basierend auf Bias-korrigierten Klimaprojektionen und dem Wasserhaushaltsmodell LARSIM-ME

Die Bundesanstalt für Gewässerkunde (BfG) erstellt Abflussprojektionen für Pegel in den Einzugsgebieten von Donau, Elbe, Ems, Rhein und Weser und stellt diese als Beitrag und Grundlage zur Deutschen Anpassungsstrategie an den Klimawandel (DAS) über den DAS-Basisdienst "Klima und Wasser" bereit. Die Projektionen fußen auf den Szenarien und Daten, die auch den Berichten des Weltklimarates zugrunde liegen. Diese globalen Klimadaten werden durch Europäische Wetterdienste und Klimaforschungsinstitute für Europa regionalisiert. Für Deutschland und die internationalen Einzugsgebietsanteile werden diese Daten durch den Deutschen Wetterdienst (DWD) ebenfalls im Rahmen des DAS-Basisdienstes aufbereitet. Die BfG setzt die hydrometeorologischen Größen (Lufttemperatur, Niederschlag, Globalstrahlung, Wind, relative Luftfeuchte) und deren für die Zukunft projizierten Änderungen mittels eines Wasserhaushaltsmodells in Tageswerte hydrologischer Größen (u.a. Abfluss) um. Die hier bereitgestellten Daten basieren auf einem Klimadatenfundus, der im Kontext des 5. IPCC-Sachstandsberichts (IPCC, 2013) durch das globale Coupled Model Intercomparison Project Nr. 5 (CMIP5, Meehl und Bony, 2011) und den europäischen Teil des Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX, Jacob et al., 2014) sowie nationale Modellaktivitäten (ReKliEs-De, Hübner et al., 2017) generiert wurden. Die rohen Klimamodelldaten wurden durch die BfG einer grundlegenden Prüfung unterzogen (Nilson, 2021; Nilson et al., 2014) um unplausible Projektionen auszuschließen. Auf Basis dieser Prüfung ergeben sich somit Ensembles von 16 Abflussprojektionen für das Hochemissionsszenario RCP8.5, 11 Projektionen für das mittlere Szenario RCP4.5 und 10 Simulationen für das bzgl. klimaschutzfortgeschritten optimistische RCP2.6-Szenario. Die verbliebenen Klimaprojektionen wurden durch den DWD aufbereitet. Zu den Aufbereitungsschritten gehört eine multivariate Biasadjustierung (Cannon, 2018) auf Basis des hydrometeorologischen Referenzdatensatzes HYRAS (Tageswerte; z.B. Rauthe et al., 2013) sowie eine räumliche Disaggregierung auf das ebenfalls von HYRAS vorgegebene Raster von 5 km x 5 km. Auf dieser Grundlage wurden durch die BfG Simulationen mit dem Wasserhaushaltsmodell LARSIM-ME (Version 2019; Fleischer et al., in Vorber.) durchgeführt und in die bereitgestellten 37 Abflussprojektionen generiert. Die Projektionen sind u.a. in Teile der Klimawirkungs- und Risikoanalyse des Bundes für Deutschland eingeflossen (KWRA 2021). Die Veröffentlichung der nächsten Risikoanalyse ist für 2028 geplant (KRA 2028). Die Pflege und Weiterentwicklung der Modelle und Daten erfolgt kontinuierlich u.a. im Rahmen der Ressortforschung der Bundesministerien für Verkehr und Umwelt.

1 2 3 4 5546 547 548