The Valles Caldera, New Mexico, USA was created by two caldera-forming eruptions at ~1.6 and ~1.1 Myr. Since then, post-caldera activity has consisted of lava domes, lava flows, large explosive phases, and a hydrothermal system active today. Possibly the youngest eruption sequence, El Cajete, was emplaced 74.4 ± 1.3 ka (Zimmerer et al., 2016) and began with pyroclastic surges, followed by pyroclastic density currents (PDCs) and pumice-rich Plinian pyroclastic fall (Self et al., 1988).
The objective of this project was to characterize crystal grains from the early El Cajete sequence, in terms of morphology and textures, using scanning electron microscopy (SEM). The early El Cajete differs from the later part of the sequence in its greater stratigraphic and lithologic complexity, having been formed from not only pyroclastic fall (like the later El Cajete) but also surge beds and PDCs.
This dataset was collected under the national open access action at Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa SEM/EDS facility supported by WP3 ILGE – MEET project, PNRR – EU Next Generation Europe program, MUR grant number D53C22001400005. This allowed me to obtain the present dataset of 31 cathodoluminescence (CL) images of 30 quartz crystals and one sanidine crystal.
A compilation of 90,688 published radiometric dates for sedimentary rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included.
While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers.
Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.)
This compilation is part of a series. Companion compilations of radiometric dates from igneous and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.007, respectively.
A compilation of 39,070 published radiometric dates for igneous rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included.
While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers.
Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.)
This compilation is part of a series. Companion compilations of radiometric dates from sedimentary and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.006 and https://doi.org/10.5880/digis.e.2023.007, respectively.