Das Vorhaben "Dialoge zum sachgerechten Umgang mit besorgniserregenden Stoffen in der Kreislaufwirtschaft" zielte darauf ab, innerhalb der beteiligten Akteure ein gemeinsames Verständnis der Herausforderungen an der Schnittstelle zwischen Chemikalien- und Abfallrecht zu entwickeln. Des Weiteren wurde ein aktueller IST-Stand auf Grundlage einer Literaturrecherche herausgearbeitet. Im Rahmen des Projekts wurden drei Workshops durchgeführt, um spezifische Teilaspekte der Schnittstelle zu behandeln. Diese fanden online mit jeweils 15 bis 30 Teilnehmenden statt. Die Vorträge und Dokumentationen der Dialoge können über einen externen Link heruntergeladen werden.
Das Projekt "Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie durchgeführt. Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Toxikologie und Experimentelle Medizin (ITEM) durchgeführt. Ziel dieses Vorhabens ist die Entwicklung, Standardisierung und wissenschaftliche Prävalidierung der Precision cut lung slices (PCLS) als ex vivo Ersatzmethode zu den bisher gebräuchlichen Tiervorversuchen der Inhalationstoxikologie (OECD guideline for testing of chemicals 403/433/436, acute inhalation toxicology, adopted 12. May 1981, tracheale toxikologische Instillationsstudien, speziell Expositions-Dosisfindungsstudien). Auf diese Weise soll durch Chemikalien-induzierte lokale Toxizität (Irritation und Inflammation) ex vivo in lebenden Lungengewebe ohne Tierversuche bestimmt werden. Die Prävalidierung soll in drei teilnehmenden Laboren (Partner (P) 1, Fraunhofer ITEM; P2, BASF SE; P3 RWTH Aachen) unter Mitwirkung des BfR, ZEBET (P4) durchgeführt werden. Das Vorhaben dient im Kern der interlaboriellen Prävalidierung der Alternativmethode PCLS in drei teilnehmenden Laboren (P1, Fraunhofer ITEM; P2, BASF SE; P3 RWTH Aachen). Hierzu soll 1. das Modell nach Erstellung einer SOP in jedem Labor etabliert werden und 2. 20 verschiedene Chemikalien auf deren Effekte (1. Zytotoxizität, 2. pro-inflammatorische Zytokine) in PCLS untersucht werden. Die Ergebnisse sollen 3. im Vergleich zu historischen Ergebnissen inhalationstoxikologischer Studien verglichen werden. Die Chemikalien werden von P2 verwaltet und die Ergebnisse werden von P1, P2 und P4 mit in vivo Daten korreliert.
Das Projekt "CLEAR - Climate and Environment in Alpine Regions" wird vom Umweltbundesamt gefördert und von Eawag - Das Wasserforschungsinstitut des ETH-Bereichs durchgeführt. Das Projekt ist eine transdisziplinäre Untersuchung über die Konsequenzen der mit dem Klimawandel verbundenen Änderungen in der Alpenregion. Das Projekt verbindet Forschungsgebiete aus den technischen, ökologischen und sozialen Wissenschaften. Dazu ist es in folgende fünf Projektgruppen unterteilt, wobei die ersten vier disziplinär arbeiten, während die fünfte mit der integrierten Bewertung befasst ist: 1. Schnittstelle zwischen Atmosphäre und Hydrosphäre; 2. Schnittstelle zwischen Klima der Vergangenheit und der Gegenwart; 3. Schnittstelle zwischen Klima und Ökologie; 4. Schnittstelle zwischen Klima und Ökonomie; 5. integrierte Bewertung mit Modellwerkzeugen, Fokusgruppen und Politikoptionen. Ziele: Ziele des Projekts sind 1. die Schaffung eines besseren Verständnis der mit dem Klimawandel verbundenen Aspekte, insbesondere im Hinblick auf ihre Komplexität und Unsicherheit, 2. die Bereitstellung einer Vielzahl von neuesten Modellwerkzeugen, 3. die Entwicklung einer umfassenden Methodik für eine integrierte Klimarisikobewertung durch die Nutzung von Fokusgruppen und Computermodellen und 4. die Bereitstellung politikrelevanter Informationen über Strategien und Mechanismen, um Maßnahmen für die Implementation in die Politiken zu testen. KLIMASZENARIO Es werden regionale Klimamodelle zur Untersuchung regionaler Klimavorhersagbarkeit und zur Sensitivität hinsichtlich der globalen Erwärmungsprozesse benutzt, die als ein dynamisches Werkzeug zur Evaluation möglicher 2xCO2-Szenarien für die Alpenregion dienen. Bioklimatische Szenarien werden für die Analyse der Waldökosysteme erstellt. Parameter: physikalische Aspekte des Klimasystems inklusive atmosphärischer, hydrologischer und ozeanographischer Aspekte räumlicher Bezug: Alpenregion (Schweiz) Zeithorizont: 2100 KLIMAFOLGEN Es werden die Folgen für Waldökosysteme, für Pflanzenarten und für den Boden in der sub-alpinen Region betrachtet. Dazu werden die Sensitivitäten der Ökosysteme und ihre Reaktionen auf den Klimawandel untersucht. Ökonomische Folgen für Landwirtschaft und Tourismus und ökonomische Chancen für die Industrie durch Technologiewandel, die aus steigende Energiekosten oder Änderungen im Verbraucherverhalten resultieren, werden ebenfalls analysiert. Sektoren und Handlungsfelder: Biodiversität und Naturschutz, Politik, Kommunikation, Wissenschaft, Umweltschutz, Landwirtschaft, Tourismus, Energiewirtschaft, Bodenschutz ANPASSUNGSMASSNAHMEN Hintergrund und Ziele: Es sollen relevante Informationen über Anpassungsmaßnahmen für die Politik bereitgestellt werden. Dieses soll durch geeignete Modelle, die auch von Nichtwissenschaftlern nutzbar sind, eine verbesserte Risikokommunikation, die Erhöhung der Akzeptanz von Maßnahmen, die Entwicklung neuer Politikwerkzeuge zur Partizipation der Öffentlichkeit und einen effektiven Mitteleinsatz in der Forschungspolitik erreicht werden. Weiterhin soll die Öffentlichkeit über Klimawandel und -folgen besser informiert werden. usw.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. Ziel dieses Vorhabens ist die Entwicklung, Standardisierung und wissenschaftliche Prävalidierung der Precision cut lung slices (PCLS) als ex vivo Ersatzmethode zu den bisher gebräuchlichen Tiervorversuchen der Inhalationstoxikologie (OECD guideline for testing of chemicals 403/433/436, acute inhalation toxicology, adopted 12. May 1981, tracheale toxikologische Instillationsstudien, speziell Expositions-Dosisfindungsstudien). Auf diese Weise soll durch Chemikalien-induzierte lokale Toxizität (Irritation und Inflammation) ex vivo in lebenden Lungengewebe ohne Tierversuche bestimmt werden. Die Prävalidierung soll in drei teilnehmenden Laboren (Partner (P) 1, Fraunhofer ITEM; P2, BASF SE; P3 RWTH Aachen) unter Mitwirkung des BfR, ZEBET (P4) durchgeführt werden. Das Vorhaben dient im Kern der interlaboriellen Prävalidierung der Alternativmethode PCLS in drei teilnehmenden Laboren (P1, Fraunhofer ITEM; P2, BASF SE; P3 RWTH Aachen). Hierzu soll 1. das Modell nach Erstellung einer SOP in jedem Labor etabliert werden und 2. 20 verschiedene Chemikalien auf deren Effekte (1. Zytotoxizität, 2. pro-inflammatorische Zytokine) in PCLS untersucht werden. Die Ergebnisse sollen 3. im Vergleich zu historischen Ergebnissen inhalationstoxikologischer Studien verglichen werden. Die Chemikalien werden von P2 verwaltet und die Ergebnisse werden von P1, P2 und P4 mit in vivo Daten korreliert.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Uniklinik RWTH Aachen, Institut für Pharmakologie und Toxikologie durchgeführt. Ziel dieses Vorhabens ist die Entwicklung, Standardisierung und wissenschaftliche Prävalidierung der Precision cut lung slices (PCLS) als ex vivo Ersatzmethode zu den bisher gebräuchlichen Tiervorversuchen der Inhalationstoxikologie (OECD guideline for testing of chemicals 403/433/436, acute inhalation toxicology, adopted 12. May 1981, tracheale toxikologische Instillationsstudien, speziell Expositions-Dosisfindungsstudien). Auf diese Weise soll durch Chemikalien-induzierte lokale Toxizität (Irritation und Inflammation) ex vivo in lebenden Lungengewebe ohne Tierversuche bestimmt werden. Die Prävalidierung soll in drei teilnehmenden Laboren (Partner (P) 1, Fraunhofer ITEM; P2, BASF SE; P3 RWTH Aachen) unter Mitwirkung des BfR, ZEBET (P4) durchgeführt werden. Das Vorhaben dient im Kern der interlaboriellen Prävalidierung der Alternativmethode PCLS in drei teilnehmenden Laboren (P1, Fraunhofer ITEM; P2, BASF SE; P3 RWTH Aachen). Hierzu soll 1. das Modell nach Erstellung einer SOP in jedem Labor etabliert werden und 2. 20 verschiedene Chemikalien auf deren Effekte (1. Zytotoxizität, 2. pro-inflammatorische Zytokine) in PCLS untersucht werden. Die Ergebnisse sollen 3. im Vergleich zu historischen Ergebnissen inhalationstoxikologischer Studien verglichen werden. Die Chemikalien werden von P2 verwaltet und die Ergebnisse werden von P1, P2 und P4 mit in vivo Daten korreliert.
Das Projekt "Dynamic (redox) interfaces in soil - Carbon turnover in microbial biomass and flux into soil organic matter" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltbiotechnologie durchgeführt. Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
Das Projekt "An der Schnittstelle von Wissenschaft und Politik: Landnutzungskonflikte und Synergien im Rahmen der Agenda 2030" wird vom Umweltbundesamt gefördert und von Universität Bonn, Zentrum für Entwicklungsforschung durchgeführt. LANUSYNCON untersucht die Vernetzungen unterschiedlicher Entwicklungsziele im Bereich der Landnutzung und das Potential von Science-Policy-Interfaces, zu einer kohärenten Landnutzungspolitik beizutragen. Angesichts einer wachsenden Bevölkerung und steigendem Bedarf an Rohstoffen und Energie ist die Knappheit von Land ein unlösbar erscheinendes Problem. Bereits heute übersteigt die Nachfrage nach Nahrung, Rohstoffen, Energie und Wohnraum bei weitem die verfügbare bioproduktive Fläche und verursacht Landnutzungskonflikte, Biodiversitätsverlust und Landdegradation. Die Konkurrenz um Land wird insbesondere bei der Gegenüberstellung konkurrierender globaler Nachhaltigkeitsziele (Sustainable Development Goals, SDGs) deutlich. Eine mangelnde Koordination zwischen den politischen Sektoren, die sich den unterschiedlichen Aspekten der Landnutzung widmen, befeuert die Konflikte und steht einer kohärenten Landnutzungspolitik entgegen. Das geplante Forschungsprojekt identifiziert und analysiert vor diesem Hintergrund Konflikte und Synergien der Ziele für nachhaltige Entwicklung im Rahmen der Landnutzung anhand von Beispielstudien in Kenia und Tansania. Anhand einer Bayerischen Netz- und Entscheidungsanalyse soll das Potential politischer Entscheidungen SDG Synergien zu nutzen und Konflikte zu vermeiden analysiert werden. In einem weiteren Schritt sollen die Wirkungspfade von Science-Policy-Interfaces (SPIs) auf politische Entscheidungen sowie die Beachtung von Synergien und Konflikten in der Arbeit von SPIs untersucht werden. Der Forschungsansatz soll Ergebnisse liefern, die für Entscheidungsträger und SPIs relevant sind und dazu dienen Auswirkungen politischer Entscheidungen über den jeweiligen politischen Sektor hinaus zu verstehen und zu berücksichtigen, um so kohärente Landnutzungspolitik zu befördern.
Das Projekt "Teilvorhaben 2: Entwurf des Rahmens für einen digitalen Coach" wird vom Umweltbundesamt gefördert und von Forschungsgesellschaft für Arbeitsphysiologie und Arbeitsschutz e.V. - Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo) durchgeführt. In Europa werden jedes Jahr mehr als 400 Millionen m3 Holz geerntet. Moderne Holzerntemaschinen gestalten den Holzernteprozess weitaus rationeller als bei der konventionellen motormanuellen Holzernte mittels Motorsäge. Diese sogenannten Cut-to-length-Systeme (CTL) erfassen bei der technischen Holzproduktion detaillierte Daten über jeden Baum. Diese Daten gewinnen zunehmend an Bedeutung für ihre Nutzung außerhalb des eigentlichen Produktionsprozesses als Basis für die nachhaltige Bewirtschaftung der europäischen Wälder. Allerdings erfordert die Bedienung dieser Spezialmaschinen eine fachbezogenen Aus- oder Weiterbildung mit langwierigen, intensiven Übungen, damit die erforderlichen Kenntnisse und Fähigkeiten erlangt werden. Die Übungsdauer beträgt in der Regel ein Jahr bis die Übungsschwelle und bis zu drei Jahren bis die volle Leistungsfähigkeit erreicht wird. Dennoch weisen Absolventen aktueller Ausbildungsprogramme und selbst Maschinenführer mit langjähriger Erfahrung Produktivitätsunterschiede von bis zu 40% auf. Um den Ausbildungs- und Übungsprozess wirksamer zu gestalten und auch bei routinierter Maschinenbedienung ein hohes Leistungsniveau zu sichern, werden im Projekt neue Coaching-, Assistenz- und Feedback-Systeme für Neueinsteiger und erfahrene Führer von Holzernte- und Holzrückemaschinen entwickelt. Diese sollen dem Forstmaschinenführer eine Eigenkontrolle seiner Leistungsfähigkeit ermöglichen, ihm außerdem Verbesserungsbereiche aufzeigen und im laufenden Betrieb Hilfestellung geben. Methoden der Kognitionswissenschaft werden angewendet, um gezieltes Feedback in geeigneten Formaten und zu optimalen Zeitpunkten bereitzustellen, die die Wahrnehmung und das Verständnis des Bedieners fördern und ihn zu ausgewogeneren Arbeitsmethoden und -techniken anleiten. Dadurch trägt das Projekt zur Effizienzsteigerung, einer verbesserten Nutzung der Holzressourcen und zur Gestaltung eines besseren und sichereren Arbeitsplatzes bei.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Frankenförder Forschungsgesellschaft mbH durchgeführt. Das FEMOZ-Projekt zielt darauf ab, die Widerstandsfähigkeit ländlicher Ernährungsumfelder im Kontext von Katastrophenrisiken und Klimawandel in Mosambik zu stärken. Das Ernährungsumfeld beschreibt die Interaktionen zwischen Verbrauchern und Märkten und beeinflusst deren Konsumverhalten. Der konzeptionelle Rahmen der Ernährungsumfelder umfasst die externe Domäne (Verfügbarkeit von Lebensmitteln, Preise, Märkte und Produkteigenschaften, Vermarktung und Regulierung) sowie die persönliche Domäne (Zugänglichkeit, Erschwinglichkeit, Bequemlichkeit und Begehrlichkeit). Beide Domänen werden im Zusammenhang mit Katastrophenrisiken und Klimawandel im Projekt betrachtet. Die Ziele von FEMOZ visieren zum einen die Messung der unterschiedlichen Dimensionen der Lebensmittelumgebung in den verschiedenen Zielregionen des Projekts an, um damit Schlussfolgerungen zu ziehen, wie sich Maßnahmen zur Entwicklung des ländlichen Raums (z.B. zur Steigerung der landwirtschaftlichen Produktion, zur Erhöhung der Einkommen oder zur Senkung der Lebensmittelpreise) letztendlich und effektiv auf die Ernährung der Bevölkerung auswirken würden. Zum anderen untersucht FEMOZ, wie Veränderungen in dem Ernährungsumfeld durch Sensibilisierung und Wissensbildung bezüglich bewährter Praktiken in den verschiedenen Dimensionen sowie weitere Änderungen in Verhalten, Praktiken und Leistungen zur Verbesserung der Nahrungssicherheit herbeigeführt werden können. Zu diesem Zweck baut FEMOZ eine innovative dreistufige und langfristige F&E-Infrastruktur auf, die Folgendes umfasst: i) ein 'Living Lab'; ii) ein 'Science-Policy-Society Interface (SPSI)' und iii) ein 'Capacity Development Hub (CDH)'. Mit diesem Ansatz stellt FEMOZ sicher, dass die gemeinsame Forschung im 'Living Lab' zu den verschiedenen Dimensionen des Ernährungsumfelds von Anfang an skaliert wird. Das Projekt unterstützt die direkte Übersetzung der Forschungsergebnisse in die Praxis, die Befähigung von Akteuren und die Verbreitung von Best Practices.
Origin | Count |
---|---|
Bund | 149 |
Type | Count |
---|---|
Förderprogramm | 148 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 1 |
offen | 148 |
Language | Count |
---|---|
Deutsch | 149 |
Englisch | 85 |
Resource type | Count |
---|---|
Keine | 122 |
Webseite | 27 |
Topic | Count |
---|---|
Boden | 115 |
Lebewesen & Lebensräume | 121 |
Luft | 97 |
Mensch & Umwelt | 149 |
Wasser | 82 |
Weitere | 149 |