Das Projekt "Optimierung der Landnutzung bezueglich des Grundwasserschutzes in bergigen Gebieten mit Hartgestein" wird vom Umweltbundesamt gefördert und von Universität München, Institut für Allgemeine und Angewandte Geologie durchgeführt. Objective/Problems to be solved: The objective of the project is to assess the degree of interference of anthropogenic activities with the hydrosphere in mountain regions. For this purpose, six regions have been selected. Analyses of various factors of agricultural, industrial activities affecting the hydrosphere will permit to assess the efficiency of imposed measures to protect the hydrosphere. The investigation will be carried out on two scales: detailed and regional. This study will also consider the results of monitoring and earlier data filed in archives, which would allow to reconstruct the evolution of hydrosphere in studied regions during the last 40 years. The modelling will allow to simulate various alternatives in term of landscape-use leading to an optimum one from the viewpoint of water management. Scientific objectives and approach: Results of this work must permit to predict the influences on water (in quantity and in quality) of various landscape-use scenario, in order to give a preference for the choices in land-planning , compatible with a sustainable development. Our project will focus on the following topics: -to identify and solve the correlation between individual factors which influence the quality and volume of water resources in mountain areas. - suggestions for optimum local development from the viewpoint of groundwater protection. Partial output of this work will be the assessment of efficiency of implementation of E.U. and national directives on groundwater protection. - The ultimate objective of the LOWRGREP project is the creation of the ECEMEWAM system (European Centre for Mutual Exchange of Experience in Water management in Mountain Regions) which will lead to a set up of project's own WWW pages. This will provide all data on optimum exploitation from the view-point of groundwater protection (general information) and data from yet studied areas to any client interested in the problem. In the case of some very specific issue, the client will be offered to contact an appropriate specialist. The first stage involves collection of all environmental data, their transfer into electronic form and their preliminary processing using a Geographical Information System. The second stage consists in monitoring catchments with two different scales (local and regional).A model will be built up in order to describe the water balance and the trends in water quality under various conditions. The final stage is the design of a software, HYDRODESUSMA: Hydrogeological Decision Support System in Mountain Areas; this software is aimed at the presentation and analysis of all the obtained data and knowledge in user-friendly form that can be easily interpreted by potential users... Prime Contractor: Association pour la recherche et le developpement des methodes et processus industriels, laboratoire geotechnique, exploitation, ressources, mineralogie; Ales/France.
Das Projekt "Clean Hydrogen in European Cities (CHIC)" wird vom Umweltbundesamt gefördert und von EvoBus GmbH durchgeführt. The Clean Hydrogen in European Cities (CHIC) Project is the essential next step to full commercialisation of hydrogen powered fuel cell (H2FC) buses. CHIC will reduce the 'time to market' for the technology and support 'market lift off' 2 central objectives of the Joint Undertaking. CHIC will: - Intensively test the technology to generate learning for the final steps towards commercialisation by operating 28 H2FC buses in medium sized fleets in normal city bus operation and 10 fuel cell passenger cars, and substantially enlarging hydrogen infrastructure in 5 European regions. - Embed the substantial knowledge and experience from previous H2FC bus projects (CUTE & HyFLEET:CUTE). - Accelerate development of clean public transport systems in 14 new European Regions. - Conduct a life cycle based sustainability assessment of the use of H2FC buses in public transport, based on a triple bottom line approach considering environmental, economic and social aspects. - Identify the advantages, improvement potentials, complementarities and synergies of H2FC buses compared with conventional and alternative technologies - Build a critical mass of public support for the benefits of 'green' hydrogen powered transport, leading to increased visibility and political commitment across Europe. The project is based on a staged introduction and build-up of H2FC bus fleets and the supporting infrastructure across Europe. A phased approach will link experienced and new cities in partnerships, greatly facilitating the smooth introduction of the new systems now and into the future. With this arrangement the project will be linked to projects fully funded from other sources and therefore magnifies the impact of the JTI. In the context of the H2FC bus projects and progress achieved to this point, the expected results of CHIC will take the technology to the brink of commercialisation, leading in turn to very significant environmental & economic benefits to Europe and to the World.
Das Projekt "The Deep Sea & Sub-Seafloor Frontier (DS 3 F)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Dezernat 3 Haushalt und Finanzen, Dritt- und Sondermittel durchgeführt. Objective: The Deep Sea and Sub-Seafloor Frontier project (DS3F) provides a pathway towards sustainable management of oceanic resources on a European scale. It will develop subseafloor sampling strategies for enhanced understanding of deep-sea and subseafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. Subseafloor drilling and sampling provide two key aspects for understanding how deep-sea ecosystems presently function and how they may respond to global change: (a) an inventory of current subsurface processes and biosphere, and their links to surface ecosystems, utilising seafloor observation and baseline studies and (b) a high resolution archive of past variations in environmental conditions and biodiversity. For both aspects, an international effort is needed to maximise progress by sharing knowledge, ideas and technologies, including mission-specific platforms to increase the efficiency, coverage and effectiveness of subseafloor sampling and exploration. The deep biosphere has been discovered only within the past two decades and comprises a major new frontier for biological exploration. We lack fundamental knowledge about biomass distribution, diversity and physiological activity of deep biosphere communities at life s extremes, and their impact on seafloor and deep sea ecosystems. Similarly, the geodynamic processes fuelling biological activity, and how these processes impinge upon the emission of geofuels, hydrocarbon formation and other resources including seafloor ecosystems, need to be understood. This Coordination & Support Action will develop the most efficient use of subseafloor sampling techniques and existing marine infrastructure to study the geosystem, its effects on the deep biosphere and marine ecosystems, and provide a comprehensive white paper and an open access web portal for a sustainable use of the oceans and a Maritime Policy.
Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.
Das Projekt "Future INternet for Smart ENergY (FINSENY)" wird vom Umweltbundesamt gefördert und von Nokia Siemens Networks GmbH & Co. KG durchgeführt. Klimaänderungen und begrenzte fossile Brennstoffe treiben die Nachfrage nach smarten Energie-Netzwerken voran, die verlässlich Elektrizität bereitstellen und durch traditionelle Erzeuger sowie Erneuerbare Energien gespeist werden. Dies ist besonders in Deutschland relevant, da hier Initiativen für Elektromobilität und die Abschaltung der Kernkraftwerke vorangetrieben werden. Smart Grids sind der Weg in die Zukunft. Sie basieren auf Integration von Information und Kommunikations-Technologie (IKT) in das Energieverteilnetz, um die Energieversorgung zu steuern und automatisch zu optimieren. 35 der führenden Energie- und IKT-Unternehmen, Forschungszentren und Universitäten aus Belgien, Finnland, Frankreich, Deutschland, Griechenland, Irland, Italien Polen, Spanien, Schweden und der Schweiz haben das FINSENY (Future Internet for Smart ENergY) Konsortium gebildet. Dieses ist ein Teil der Initiative Future Internet Public Private Partnership (FI-PPP) und wird durch die Europäische Union mit unterstützt. Das Forschungskonsortium wird die Anforderungen eines Smart Grid IKT-Systems identifizieren, Referenz-Architekturen entwickeln und zur Entwicklung einer industrieübergreifenden Standardisierung beitragen. Dies wird helfen, eine breite Akzeptanz von smarten Energielösungen in Europa und darüber hinaus sicherzustellen. Die Integration von IKT in die Infrastruktur der Energieversorgung wird Echtzeit-Reaktionen ermöglichen und damit effizient die Volatilität der elektrischen Netzlasten und der Energieerzeugung durch kabellose und optische Kommunikationssysteme bewältigen. Echtzeit-Reaktionsfähigkeit ist notwendig, um Nieder- und Mittelspannungsverteilnetze, die ein essentieller Teil der Smart Grids sind, zu kontrollieren. Die DKE (VDE) deckt dabei den Bereich der Standardisierung ab und analysiert vorhandene und noch zu entwickelnde Standards.
Das Projekt "Solar Steam Reforming of Methane Rich Gas for Synthesis Gas Production (SOLREF)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. Project main goals: The main purpose of this project is to develop an innovative 400 kWth solar reformer for several applications such as Hydrogen production or electricity generation. Depending of the feed source for the reforming process CO2 emissions can be reduced significantly (up to 40 percent using NG), because the needed process heat for this highly endothermic reaction is provided by concentrated solar energy. A pre-design of a 1 MW prototype plant in Southern Italy and a conceptual layout of a commercial 50 MWth reforming plant complete this project. Key issues: The profitability decides if a new technology has a chance to come into the market. Therefore several modifications and improvements to the state-of-the-art solar reformer technology will be introduced before large scale and commercial system can be developed. These changes are primarily to the catalytic system, the reactor optimisation and operation procedures and the associated optics for concentrating the solar radiation. For the dissemination of solar reforming technology the regions targeted are in Southern Europe and Northern Africa. The potential markets and the impact of infrastructure and administrative restrictions will be assessed. The environmental, socio-economic and institutional impacts of solar reforming technology exploitation will be assessed with respect to sustainable development. The market potential of solar reforming technology in a liberalised European energy market will be evaluated. Detailed cost estimates for a 50 MWth commercial plant will be determined.
Das Projekt "Biomass Fuell Cell Utility System (BIOCELLUS)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Objective: Energy from Biomass needs highly efficient small-scale energy systems in order to achieve cost effective solutions for decentralized generation especially in Mediterranean and Southern areas, and for applications without adequate heat consumer. Thus fuel cells are an attractive option for decentralized generation from biomass and agricultural residues but they have to meet at least two outstanding challenges: 1. Fuel cell materials and the gas cleaning technologies have to treat high dust loads of the fuel gas and pollutants like tars, alkalines and heavy metals. 2. The system integration has to allow efficiencies of at least 40-50 percent even within a power range of few tens or hundreds of kW. This proposal addresses in particular these two aims. Hence the first part of the project will focus on the investigation of the impact of these pollutants on degradation and performance characteristics of SOFC fuel cells in order to specify the requirements for appropriate gas cleaning system (WP 1-2). These tests will be performed at six existing gasification sites, which represent the most common and applicable gasification technologies. WP 3 will finally test and demonstrate the selected gas cleaning technologies in order to verify the specifications obtained from the gasification tests. The results will be used for the development, installation and testing of an innovative SOFC - Gasification concept, which will especially match the particular requirements of fuel cell systems for the conversion of biomass feedstock. The innovative concept comprises to heat an allothermal gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This so-called TopCycle concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.
Das Projekt "CO2SINK - In-situ Labor zur Untersuchung der Speicherung von Kohlendioxid unter der Erde" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Ketzin ist eine Stadt westlich von Berlin im Land Brandenburg. In ihrer Nähe wurde seit 1960 Erdgas aus Sibirien in unterirdischen Sandsteinschichten zwischengelagert. Diese Erdgasspeicherung wurde vor kurzem eingestellt. Hier soll ein Forschungs- und Entwicklungsprojekt eingerichtet werden, bei dem das Treibhausgas Kohlendioxid (CO2 ) im Untergrund gelagert werden soll. Das Projekt wird vom GeoForschungsZentrum Potsdam koordiniert und von der Europäischen Union mit 8.7 Millionen Euro gefördert. Das Projekt soll helfen, das wissenschaftliche Verständnis der geologischen Speicherung von CO2 weiter zu entwickeln und die im Untergrund ablaufenden Prozesse der CO2 Injektion praktisch zu erforschen. Zunächst werden geologisch-geophysikalisch-geochemische Voruntersuchungen des Standortes und des vorgesehenen Speicherhorizontes sowie eine umfassende Risikoabschätzung vorgenommen um sicherzustellen, dass die Speicherung auch gefahrlos durchgeführt werden kann. Die erforderlichen Bewilligungen des zuständigen Bergamtes, der örtlichen Gemeinde und das Einverständnis der betroffenen Anwohner müssen dazu eingeholt werden. Die künftige Nutzung des Geländes ist Teil eines behördlich bereits genehmigten Bebauungsplans, der auch andere Vorhaben zur Nutzung regenerativer Energie aus Wind, Sonne und Biomasse einschließt. Das CO2 SINK Projekt erlaubt die Weiterverwendung vorhandener Gasspeicher-Infrastrukturen. Geplant ist die unterirdische Injektion von jährlich mehreren 10,000 Tonnen an reinem CO2 für zunächst zwei bis drei Jahre. Das CO2 soll dabei vorwiegend aus regenerativen Biomasse-Energierohstoffen gewonnen werden. Dieses ermöglicht im Prinzip, CO2 aus der Atmosphäre zu entziehen und damit die Treibhausgaskonzentration zu verringern. Unterirdische Erdgasspeicher und geologische Speicher für CO2 in salinen Grundwasserleitern (Aquifere) haben zwei gemeinsame Merkmale: Sie bestehen aus Gestein mit großem Porenraum wie z.B. Sandstein, das von abdichtenden Tonschichten überdeckt ist. Im Untergrundspeicher Ketzin wurde das Erdgas in einer Sandsteinschicht zwischen 250 und 400 Meter Tiefe unter der Erde gelagert. Aus Erkundungsbohrungen und seismischen Messungen weiß man, dass es dort aber noch mindestens eine weitere gut geeignete Speicherschicht in größerer Tiefe gibt. Diese ist rund 80 Meter mächtig und liegt auf einer geologischen Kuppe, die sich bis ungefähr 600 Meter unter der Erdoberfläche aufwölbt. Die Sandsteinschicht fällt nach allen Seiten auf etwa 700 Meter ab und ist von abdichtenden Gips- und Tonschichten überlagert. Um den Untergrund und die bei der CO2 Speicherung darin ablaufenden Prozesse verstehen zu können, ist im Projekt CO2SINK eine umfassende Reihe von wissenschaftlichen Untersuchungen geplant. Usw.
Das Projekt "Vorhersage der Erholung von angesaeuertem Suesswasser bis zum Jahr 2010 und darueber hinaus" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Bayreuther Institut für Terrestrische Ökosystemforschung, Lehrstuhl für Bodenökologie durchgeführt. Objective/Problems to be solved: RECOVER:2010 is designed to assess the impact of current and future anthropogenic pressures on sensitive European freshwater ecosystems. RECOVER:2010 will evaluate the present extent of recovery of acidified freshwaters, and identify and quantify the dominant driving processes governing the timing and magnitude of recovery. This Pan-European assessment will use enhanced predictive models to evaluate the degree of compliance with respect to restoration of acidified waters by the year 2010 as specified under the Water Framework Directive. Similarly, agreed and proposed UN-ECE protocols on emissions control will be critically assessed and economic costs and environmental benefits evaluated with respect to the recovery of freshwaters. Scientific objectives and approach: Empirical data from different acidified European ecotypes will be evaluated to provide measures of time lags in response to changes in emissions of acidifying compounds, and indeed to separate out the different contributing processes. Regional controls on sulphur dynamics, and the role of nitrogen in the recovery process will be determined. Current conceptualisation of the recovery process has not considered potential interaction with natural variations such as climate induced impacts, and RECOVER:2010 aims to assess the magnitude and spatial extent of these confounding factors. Current dynamic modelling approaches will then be enhanced through improved process representation, and through the linking of hydrochemical changes to biological impacts and time lags in ecosystem recovery. An evaluation of Pan-European existing and proposed emission controls will then be undertaken to determine spatial and temporal patterns of response. Feedback from the modelling evaluation will be central to the development of strategies to optimise environmental benefit against economic cost. Similarly, the timing of mitigation measures such as the implementation of S and/or N emissions reduction, will greatly influence the expected recovery of both individual regions and Europe as a whole. These, previously un-addressed interactions, will be also explored within RECOVER:2010. Hence these are distinct scientific, methodological and policy challenges which interact within the concept of RECOVER:2010. Expected impacts: The development of sustainable options for emissions control reductions is required to balance economic, social and environmental constraints. RECOVER:2010 will specifically address such concerns, and the involvement of an end-user focus group comprising National and International Agencies, will ensure that the results of this project extend further than just the scientific domain. Prime Contractor: Macaulay Land Use Research Institute; Aberdeen/UK.
Das Projekt "Compact direct (m)ethanol fuel cell for portable application (MOREPOWER)" wird vom Umweltbundesamt gefördert und von GKSS-Forschungszentrum Geesthacht, Standort Geesthacht, Institut für Chemie durchgeführt. Objective: The objective is to develop a low-cost, low temperature, portable direct methanol fuel cell device. It will also offer limited operation on ethanol fuel and will be of compact construction and modular design. The development will include novel proton exchange membranes, anode and cathode electro catalysts and fully optimised multilayer membrane electrode assemblies. New low-cost proton exchange membranes will be developed to reduce the methanol crossover rate through the electrolyte to levels significantly lower than that of currently available materials (e.g. Nafion). New electro catalyst materials will be developed to enhance the low temperature methanol (and ethanol) electro-oxidation activity of the anode. Catalyst development for the cathode will focus on enhancing the oxygen reduction activity of platinum electro catalyst and increasing its selectivity to enhance methanol tolerance. The structure of the electro catalyst and electrode layers will be optimised to promote efficient operation at low temperatures with practical flows and pressures. System optimisation, simplification and miniaturization will be carried out. The final performance objectives will be: single cells operating at 0.5V / cell at 0.2 Acm-2 at 30-60 C (in atmospheric pressure air). Prototypes of 100 and later 500 W stacks, operating at low temperatures with aimed electrical characteristics of 40 A/12.5 V, will be the targets of the project. The effective operation at this low temperature is particularly challenging. Additionally a conceptual study for up-scale will be supplied. A narrow collaboration between research centres and industry will make possible a rapid exploitation of the new components and system developments. A SME will be responsible for the integration and will deliver the prototypes. The potential market for portable fuel cells includes weather stations, medical devices, signal units, auxiliary power units, gas sensors and security cameras.
Origin | Count |
---|---|
Bund | 238 |
Type | Count |
---|---|
Förderprogramm | 238 |
License | Count |
---|---|
offen | 238 |
Language | Count |
---|---|
Deutsch | 238 |
Englisch | 235 |
Resource type | Count |
---|---|
Keine | 164 |
Webseite | 74 |
Topic | Count |
---|---|
Boden | 193 |
Lebewesen & Lebensräume | 227 |
Luft | 157 |
Mensch & Umwelt | 238 |
Wasser | 204 |
Weitere | 238 |