s/spectrometrie/Spektrometrie/gi
Unter einem Biofilm versteht man die Aggregation von Mikroorganismen an einer Oberfläche, die in eine Matrix aus extrazellulären polymeren Substanzen (EPS) eingebettet sind. Biofilme sind in der Natur weit verbreitet (Boden, Gewässer) und werden im Rahmen der biologischen Abwassserreinigung zum Abbau organischer Wasserinhaltsstoffe eingesetzt. Neben der Stoffwechselaktivität der Mikroorganismen haben insbesondere Stofftransport, Biofilmwachstum und -ablösung einen entscheidenden Einfluß auf die Effektivität des Prozesses. Schichtdicke und Stabilität des Biofilms werden von einer Vielzahl an Prozeßbedingungen (pH, Temperatur, Strömungsbedingungen, Zusammensetzung von Nährmedium und Abwasser) beeinflußt. Da jedoch bisher keine geeignete On-line-Analytik zur Verfügung stand, konnten die Auswirkungen verschiedener Parameter auf den Biofilm nicht ausreichend untersucht werden. Ein im Rahmen des von der DFG geförderten SFB 411 entwickeltes photoakustisches Sensorsystem soll nunmehr zur simultanen Überwachung von Biofilmen an drei Stellen in einem Reaktor eingesetzt werden. Der Einfluß variierendener Prozeßparameter auf Architektur und Stabilität soll untersucht werden, wobei ein besonderer Schwerpunkt auf Partikelinkorporation und Flockenabriss liegt. Die Ergebnisse des beantragten Projekts könnten einen wesentlichen Beitrag leisten, um die Prozeßsteuerung bezüglich der Biofilmablösung zu verbessern.
Nach langjaehrigen Messungen der Radioaktivitaet des atmosphaerischen Krypton, CO2 und Wasserdampfs sollen jetzt organische Bestandteile mit untersucht werden. Beim C-14 Gehalt des atmosphaerischen Methans ist moeglicherweise der Einfluss von Kernkraftwerken nachweisbar; infolge der zunehmenden Verwendung von Tritium in der biologischen und medizinischen Forschung wurden lokale Ueberhoehungen der Tritium-Konzentration bereits gemessen. Methode: Probennahme teils im Zuge der Luftverfluessigung (Methan, Krypton), teils durch chemische Absorption nach Verbrennung. Aktivitaetsmessung im Fluessigkeitsszintillationsspektrometer.
Ziel des Vorhabens ist es, die solaren Einstrahlungsbedingungen in der Antarktis in Abhängigkeit der Wellenlänge zu untersuchen. Das Projekt soll ein verbessertes Verständnis der besonderen Strahlungsverhältnisse in polaren Regionen der Erde ermöglichen, um die Auswirkungen des zunehmenden Treibhauseffekts und des weiter voranschreitenden Ozonabbaus in Zukunft besser abschätzen zu können. Zur Charakterisierung der Einstrahlung soll ein Messsystem zur Erfassung der spektralen Strahlstärke wie auch der spektralen Bestrahlungsstärke zwischen 290-2500 nm bei verschiedenen Atmosphärenbedingungen konfiguriert werden. Ferner werden Strahldichten in Abhängigkeit des Einfallswinkels modelliert, wobei die bidirektionale Reflektionsfunktion des Untergrunds berücksichtigt werden soll. Die Modellrechnungen dienen der Vorbereitung weiterer Messkampagnen. Aufgrund der Vorerfahrungen in anderen Gebieten der Erde (u.a. in den Hochlagen der Alpen) ist damit zu rechnen, dass insbesondere Wolken und die hohe Schneealbedo in der Antarktis das Strahlungsfeld wesentlich modifizieren.
'Mit Hilfe der Kopplung von HPLC bzw. GC an eine ICP-MS können Fluide (Boden-, Grund-, Meer- Prozesswässer, Fluid Inclusions in Mineralen, Gase aus Schmelzen, vulkanische, atmosphärische und Biogase) auf ihre Inhaltsstoffe untersucht werden. Dabei können schwer-, mittel-, und leichtflüchtige organische und anorganische Komponenten analysiert werden. Der besondere Vorteil liegt in der chromatographischen Trennung in die jeweiligen Spezies und Komplexe umweltrelevanter Elemente gekoppelt mit einer hochsensitiven massenspektrometrischen Detektion. Die Verwendung des induktiv gekoppelten Plasmas vor der Massenspektrometrie ist dabei aussagefähiger für flüchtige organische Verbindungen als die Verwendung einer einfachen GC-MS, weil nicht 'zufällige Bruchstücke nach Massenzahlen identifiziert werden, sondern einzelne Elemente. Für die Identifizierung komplexer wässriger Spezies, z.B. As-S, As-U, U-P-Verbindungen etc., besticht die ICP-MS als Mulitelementmethode, da gleichzeitig eine Vielzahl von Elementen gemessen werden kann, deren Massenverhältnisse Aufschluss über ihren Anteil an der jeweiligen Spezies geben. Damit kann in begrenztem Umfang auch Strukturaufklärung unbekannter Spezies betrieben werden. Monitoring verschiedener Isotope eines Elements ermöglicht darüber hinaus die Interpretation von Fraktionierungsprozessen in den Proben.'
Im Rahmen dieser Vorstudie soll die analytische Methode fuer diverse Bodenextraktionen und Pflanzenaufschluesse festgestellt werden. Die sichere Reproduzierbarkeit und Genauigkeit in den Resultaten bestimmter Elementekonzentrationen muss gewaehrleistet sein. Methoden: Die Methoden umfassen chemische und instrumentelle Bestimmungen von Boden- und Pflanzenextrakten mit ICP-Spektrometrie, Ionen-Chromatographie und Stickstoff-Bestimmung nach Kjeldal.
Das Hauptziel des Projektes besteht darin, neue Quinoa-Sorten für den Anbau in Deutschland zu entwickeln, die über die Ertragsleistung aktueller Sorten hinausgehen, und damit Quinoa langfristig als neue Kulturart in einer diversifizierten Landwirtschaft zu etablieren. Dieses Ziel soll erreicht werden, indem die genetischen Grundlagen agronomisch wichtiger Merkmale anhand genomischer Assoziationsstudien (GWAS) und QTL-Kartierung identifiziert und daraus Marker für die Marker-gestützte Züchtung entwickelt werden. Zusätzlich sollen die Voraussetzungen dafür geschaffen werden, um Quinoa den modernen Methoden der Pflanzenzüchtung zugänglich zu machen. Dafür sollen Verfahren zur Produktion von doppelhaploiden (DH) Linien sowie eines cytoplasmatischen Sterilitätssystem (CMS) entwickelt werden, um die Effizienz der Züchtung von Quinoa zu erhöhen. Die Kulturart Quinoa zeichnet sich durch eine hohe Toleranz gegenüber Umweltstress und eine hohe Kornqualität aus. Um diese Eigenschaften in der Züchtung zu kombinieren und zu verbessern, sollen durch innovative Analysemethoden des Korns mit NMR Spektroskopie sowie mehrortige und -jährige Feldversuche robuste Sorten mit einer hohen Produktqualität gezüchtet werden, die anschließend in die Sortenprüfung eingebracht werden können. In der Summe wollen wir am Beispiel der Kulturpflanze Quinoa zeigen, dass durch die Anwendung aktueller Methoden der Genomik, Haploidentechnologie und Phänotypisierung, bisher wenig genutzte Kulturpflanzen in vergleichsweise kurzer Zeit so weit entwickelt werden können, dass sie für einen wirtschaftlichen Anbau interessant werden.
des Projektes besteht darin, neue Quinoa-Sorten für den Anbau in Deutschland zu entwickeln, die über die Ertragsleistung aktueller Sorten hinausgehen, und damit Quinoa langfristig als neue Kulturart in einer diversifizierten Landwirtschaft zu etablieren. Dieses Ziel soll erreicht werden, indem die genetischen Grundlagen agronomisch wichtiger Merkmale anhand genomischer Assoziationsstudien (GWAS) und QTL-Kartierung identifiziert und daraus Marker für die Marker-gestützte Züchtung entwickelt werden. Zusätzlich sollen die Voraussetzungen dafür geschaffen werden, um Quinoa den modernen Methoden der Pflanzenzüchtung zugänglich zu machen. Dafür sollen Verfahren zur Produktion von doppelhaploiden (DH) Linien sowie eines cytoplasmatischen Sterilitätssystem (CMS) entwickelt werden, um die Effizienz der Züchtung von Quinoa zu erhöhen. Die Kulturart Quinoa zeichnet sich durch eine hohe Toleranz gegenüber Umweltstress und eine hohe Kornqualität aus. Um diese Eigenschaften in der Züchtung zu kombinieren und zu verbessern, sollen durch innovative Analysemethoden des Korns mit NMR Spektroskopie sowie mehrortige und -jährige Feldversuche robuste Sorten mit einer hohen Produktqualität gezüchtet werden, die anschließend in die Sortenprüfung eingebracht werden können. In der Summe wollen wir am Beispiel der Kulturpflanze Quinoa zeigen, dass durch die Anwendung aktueller Methoden der Genomik, Haploidentechnologie und Phänotypisierung, bisher wenig genutzte Kulturpflanzen in vergleichsweise kurzer Zeit so weit entwickelt werden können, dass sie für einen wirtschaftlichen Anbau interessant werden.
Ziel diesen Antrags ist die Teilnahme der universitären Partner an den Messungen der Kampagne PGS (POLSTRACC/ GWLCYCLE/ SALSA), die im Winter 2015/2016 durchgeführt werden sollen. An der geplanten HALO Kampagne sind die Universitäten Frankfurt, Mainz, Heidelberg und Wuppertal beteiligt. Die Universität Mainz ist kein voller Partner dieses Antrages, da es kein Projekt der Universität Mainz (AG Prof. Peter Hoor) in der letzten Phase des Schwerpunktprogramms gab. Der finanzielle Teil der geplanten Aktivitäten der Universität Mainz soll daher über die Universität Frankfurt abgewickelt werden. Der wissenschaftliche Beitrag der Universität Mainz ist allerdings in einer ähnlichen Weise dargestellt wie für die anderen universitären Partner. Das Ziel von PGS ist es, Beobachtungen einer großen Zahl verschieden langlebiger Tracer zur Verfügung zu stellen, um chemische und dynamische Fragestellungen in der UTLS zu untersuchen (POLSTRACC und SALSA) und die Bildung und Propagation von Schwerwellen in der Atmosphäre zu untersuchen. (GWLCYCLE). Die Universitäten Frankfurt und Wuppertal schlagen vor hierfür GC Messungen von verschieden langlebigen Spurengasen und von CO2 (Wuppertal) durchzuführen. Die Universität Mainz schlägt den Betrieb eines Laser Spektrometers für schnelle Messungen von N2O, CH4 und CO vor und die Universität Heidelberg plant Messungen reaktiver Chlor und Bromverbindungen mit Hilfe der DOAS Technik. Die wissenschaftlichen Studien, die mit den gewonnen Daten durchgeführt werden sollen, werden im Antrag umrissen. Es sind Studien zu Herkunft und Transport von Luftmassen in der UTLS, zu Transportzeitskalen und zum chemischen Partitionierung. Es sei an dieser Stelle darauf hingewiesen, dass diese wissenschaftlichen Arbeiten zwar hier umrissen werden, die Studien selbst aber aufgrund der begrenzten Personalförderung und der kurzen Laufzeit nicht Teil dieses Antrags sind. Ziel dieses Antrags ist es, die Vorbereitung und Integration der Messgeräte zu ermöglichen, die Messungen durchzuführen und die Daten für die Datenbank auszuwerten. Wir beantragen daher hier den universitären Anteil an den Missionskosten (incl. Zertifizierung der Gesamtnutzlast und der Flugkosten), die Personalmittel, Reisekosten und Verbrauchskosten für die Durchführung der Messungen.
| Origin | Count |
|---|---|
| Bund | 1824 |
| Land | 5 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 1804 |
| Repositorium | 1 |
| Text | 13 |
| unbekannt | 10 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 1805 |
| Language | Count |
|---|---|
| Deutsch | 1679 |
| Englisch | 309 |
| Resource type | Count |
|---|---|
| Dokument | 12 |
| Keine | 1103 |
| Webseite | 714 |
| Topic | Count |
|---|---|
| Boden | 1202 |
| Lebewesen und Lebensräume | 1169 |
| Luft | 1077 |
| Mensch und Umwelt | 1828 |
| Wasser | 998 |
| Weitere | 1810 |