s/spectrometrie/Spektrometrie/gi
The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.
L'objectif du projet est le developpement de nouveaux moyens experimentaux pour reveler des concentrations faibles d'elements contaminants dans les cellules telles que les neurones. La technique se base sur la spectromicroscopie de photoemission tant avec le rayonnement synchrotron qu'avec des ressources conventionnelles de rayons X. La technique des revelations est beaucoup plus avancee que celles qui sont actuellement utilisees, etant donne qu'elle est capable de reveler en meme temps les composants chimiques, leur etat de valence et leur position dans l'espace. Il s'agit donc aussi d'une technique tres avancee pour analyser les consequences de la pollution sur les cellules. Elle est presque ideale pour la revelation des contaminants tels que les metaux. (FRA)
Im Zuge des Klimawandels steigt der Informationsbedarf zur Vitalitätsentwicklung von Wäldern und Baumarten und deren Reaktionen auf Störungsereignisse wie Sturm oder Kalamitäten. Da detaillierte Information häufig fehlen, sind die zahlreich verbreiteten Abschätzungen hierzu teils widersprüchlich und spekulativ. Parallel zur terrestrischen Waldzustandserfassung ist die forstliche Fernerkundung bemüht, diese Informationslücke zu schließen. Allerdings ist die Unterscheidung von Baumarten und deren Vitalitätszustand noch immer problematisch. Zur Erhebung dieser Messwerte fehlen belastbare baumphysiologisch belegte Zusammenhänge. Dafür bieten sich Verfahren der Fernerkundung an, wenn über eine rein empirische Erhebung hinaus die Ableitung baumphysiologischer Parameter gelingt. Mit dem aktuellen Forschungsvorhaben soll eine Brücke zwischen den modernen Möglichkeiten der forstlichen Fernerkundung und Gehölzphysiologie geschlagen werden. Ein im Wald installierter 40 m hoher Drehkran am GFZ TERENO-Forschungsstandort im Raum Demmin (MV) bietet dabei für FeMoPhys einzigartige Möglichkeiten. Das Vorhaben verfolgt folgende Ziele: 1. Untersuchung von Zusammenhängen zwischen stressbedingten, physiologischen Veränderungen in Baumkronen, Stamm und Wurzeln und deren Quantifizierbarkeit durch 'Messung von außen' 2. Verknüpfung des methodischen Knowhow der baumphysiologischen Diagnostik und den Verfahren der hyper-/multispektralen und thermalen Diagnostik von Baumkronen 3. Identifikation klimasensitiver Areale auf der Basis von Flächendaten und baumphysiologischen Untersuchungen speziell für Hauptbaumarten 4. Entwicklung eines einfach zugänglichen Informationsproduktes zum Waldzustand Das Projekt will einen Forest Vulnerability Index anvisieren, der Zielgrößen wie Anfälligkeit für Insektenbefall und Dürreschäden ausgibt. Dieser und weitere Indizes können kombiniert werden, und so helfen, Risikos für Kaskadeneffekte und die Überschreitung von Kipppunkten abzuschätzen.
Das Hauptziel des Projektes besteht darin, neue Quinoa-Sorten für den Anbau in Deutschland zu entwickeln, die über die Ertragsleistung aktueller Sorten hinausgehen, und damit Quinoa langfristig als neue Kulturart in einer diversifizierten Landwirtschaft zu etablieren. Dieses Ziel soll erreicht werden, indem die genetischen Grundlagen agronomisch wichtiger Merkmale anhand genomischer Assoziationsstudien (GWAS) und QTL-Kartierung identifiziert und daraus Marker für die Marker-gestützte Züchtung entwickelt werden. Zusätzlich sollen die Voraussetzungen dafür geschaffen werden, um Quinoa den modernen Methoden der Pflanzenzüchtung zugänglich zu machen. Dafür sollen Verfahren zur Produktion von doppelhaploiden (DH) Linien sowie eines cytoplasmatischen Sterilitätssystem (CMS) entwickelt werden, um die Effizienz der Züchtung von Quinoa zu erhöhen. Die Kulturart Quinoa zeichnet sich durch eine hohe Toleranz gegenüber Umweltstress und eine hohe Kornqualität aus. Um diese Eigenschaften in der Züchtung zu kombinieren und zu verbessern, sollen durch innovative Analysemethoden des Korns mit NMR Spektroskopie sowie mehrortige und -jährige Feldversuche robuste Sorten mit einer hohen Produktqualität gezüchtet werden, die anschließend in die Sortenprüfung eingebracht werden können. In der Summe wollen wir am Beispiel der Kulturpflanze Quinoa zeigen, dass durch die Anwendung aktueller Methoden der Genomik, Haploidentechnologie und Phänotypisierung, bisher wenig genutzte Kulturpflanzen in vergleichsweise kurzer Zeit so weit entwickelt werden können, dass sie für einen wirtschaftlichen Anbau interessant werden.
des Projektes besteht darin, neue Quinoa-Sorten für den Anbau in Deutschland zu entwickeln, die über die Ertragsleistung aktueller Sorten hinausgehen, und damit Quinoa langfristig als neue Kulturart in einer diversifizierten Landwirtschaft zu etablieren. Dieses Ziel soll erreicht werden, indem die genetischen Grundlagen agronomisch wichtiger Merkmale anhand genomischer Assoziationsstudien (GWAS) und QTL-Kartierung identifiziert und daraus Marker für die Marker-gestützte Züchtung entwickelt werden. Zusätzlich sollen die Voraussetzungen dafür geschaffen werden, um Quinoa den modernen Methoden der Pflanzenzüchtung zugänglich zu machen. Dafür sollen Verfahren zur Produktion von doppelhaploiden (DH) Linien sowie eines cytoplasmatischen Sterilitätssystem (CMS) entwickelt werden, um die Effizienz der Züchtung von Quinoa zu erhöhen. Die Kulturart Quinoa zeichnet sich durch eine hohe Toleranz gegenüber Umweltstress und eine hohe Kornqualität aus. Um diese Eigenschaften in der Züchtung zu kombinieren und zu verbessern, sollen durch innovative Analysemethoden des Korns mit NMR Spektroskopie sowie mehrortige und -jährige Feldversuche robuste Sorten mit einer hohen Produktqualität gezüchtet werden, die anschließend in die Sortenprüfung eingebracht werden können. In der Summe wollen wir am Beispiel der Kulturpflanze Quinoa zeigen, dass durch die Anwendung aktueller Methoden der Genomik, Haploidentechnologie und Phänotypisierung, bisher wenig genutzte Kulturpflanzen in vergleichsweise kurzer Zeit so weit entwickelt werden können, dass sie für einen wirtschaftlichen Anbau interessant werden.
Ziel diesen Antrags ist die Teilnahme der universitären Partner an den Messungen der Kampagne PGS (POLSTRACC/ GWLCYCLE/ SALSA), die im Winter 2015/2016 durchgeführt werden sollen. An der geplanten HALO Kampagne sind die Universitäten Frankfurt, Mainz, Heidelberg und Wuppertal beteiligt. Die Universität Mainz ist kein voller Partner dieses Antrages, da es kein Projekt der Universität Mainz (AG Prof. Peter Hoor) in der letzten Phase des Schwerpunktprogramms gab. Der finanzielle Teil der geplanten Aktivitäten der Universität Mainz soll daher über die Universität Frankfurt abgewickelt werden. Der wissenschaftliche Beitrag der Universität Mainz ist allerdings in einer ähnlichen Weise dargestellt wie für die anderen universitären Partner. Das Ziel von PGS ist es, Beobachtungen einer großen Zahl verschieden langlebiger Tracer zur Verfügung zu stellen, um chemische und dynamische Fragestellungen in der UTLS zu untersuchen (POLSTRACC und SALSA) und die Bildung und Propagation von Schwerwellen in der Atmosphäre zu untersuchen. (GWLCYCLE). Die Universitäten Frankfurt und Wuppertal schlagen vor hierfür GC Messungen von verschieden langlebigen Spurengasen und von CO2 (Wuppertal) durchzuführen. Die Universität Mainz schlägt den Betrieb eines Laser Spektrometers für schnelle Messungen von N2O, CH4 und CO vor und die Universität Heidelberg plant Messungen reaktiver Chlor und Bromverbindungen mit Hilfe der DOAS Technik. Die wissenschaftlichen Studien, die mit den gewonnen Daten durchgeführt werden sollen, werden im Antrag umrissen. Es sind Studien zu Herkunft und Transport von Luftmassen in der UTLS, zu Transportzeitskalen und zum chemischen Partitionierung. Es sei an dieser Stelle darauf hingewiesen, dass diese wissenschaftlichen Arbeiten zwar hier umrissen werden, die Studien selbst aber aufgrund der begrenzten Personalförderung und der kurzen Laufzeit nicht Teil dieses Antrags sind. Ziel dieses Antrags ist es, die Vorbereitung und Integration der Messgeräte zu ermöglichen, die Messungen durchzuführen und die Daten für die Datenbank auszuwerten. Wir beantragen daher hier den universitären Anteil an den Missionskosten (incl. Zertifizierung der Gesamtnutzlast und der Flugkosten), die Personalmittel, Reisekosten und Verbrauchskosten für die Durchführung der Messungen.
Hauptziel von TV1 ist die Untersuchung verschiedener Hauptbaumarten entlang der deutschen Mittelgebirgsschwelle in Bezug auf ihre Reaktion auf klimatische Extremereignisse. Dazu werden langfristige Klima-Wachstumsbeziehungen ermittelt und mit hochfrequenten physiologischen Messungen am Baum kombiniert. Zur Erklärung der beobachteten Reaktionsmuster werden verschiedene Standortfaktoren und Umweltparameter hinzugezogen. Dabei werden Klima, Boden und Topographie genauso berücksichtigt wie die Bestandshistorie und Managementfaktoren. Ein weiteres Ziel von TV1 ist die Entwicklung eines neuen Strahlungsmoduls. Dies soll in das standardisierte DHC-Monitoringsystem integriert werden, um die kurzwellige Strahlung photosynthetisch und photomorphogenetisch relevanter Spektralbereiche in Echtzeit zu erfassen. Die Spektralanalyse liefert Einblicke in die Kroneneigenschaften und damit in das Stresslevel der Bäume. Durch die Kopplung mit den gemessenen Kohlenstoff- und Wasserflüssen sowie weiteren DHC-Daten können die Strahlungsdaten zudem Aufschluss über verschiedene Aspekte der Morphogenese geben. Die Erkenntnisse aus TV1 dienen dem Prozessverständnis und bilden eine wichtige Basis für die Berechnung von Energie-, Wasser- und Kohlenstoffbilanzen ausgewählter Waldbestände. Sie fließen in die im Gesamtprojekt verwendeten Modelle ein und werden genutzt, um Zusammenhänge zwischen Energieinput, Wachstum und Stress zu quantifizieren. Die Strahlungsdaten dienen zudem der Verbesserung der Validierung von Fernerkundungsprodukten. Neben den genannten Forschungsaktivitäten übernimmt TV1 die Koordination des Verbundvorhabens und leitet die Bereiche Kommunikation und Transfer. Dazu gehört die Organisation von Projektmeetings und Workshops unter Einbezug relevanter AkteurInnen aus Forstpraxis und -verwaltung sowie die Entwicklung eines Leitfadens mit Handlungsempfehlungen für die Forstpraxis. Dieser soll basierend auf den Forschungsergebnissen zum Projektende veröffentlicht werden.
Hauptziel von TV1 ist die Untersuchung verschiedener Hauptbaumarten entlang der deutschen Mittelgebirgsschwelle in Bezug auf ihre Reaktion auf klimatische Extremereignisse. Dazu werden langfristige Klima-Wachstumsbeziehungen ermittelt und mit hochfrequenten physiologischen Messungen am Baum kombiniert. Zur Erklärung der beobachteten Reaktionsmuster werden verschiedene Standortfaktoren und Umweltparameter hinzugezogen. Dabei werden Klima, Boden und Topographie genauso berücksichtigt wie die Bestandshistorie und Managementfaktoren. Ein weiteres Ziel von TV1 ist die Entwicklung eines neuen Strahlungsmoduls. Dies soll in das standardisierte DHC-Monitoringsystem integriert werden, um die kurzwellige Strahlung photosynthetisch und photomorphogenetisch relevanter Spektralbereiche in Echtzeit zu erfassen. Die Spektralanalyse liefert Einblicke in die Kroneneigenschaften und damit in das Stresslevel der Bäume. Durch die Kopplung mit den gemessenen Kohlenstoff- und Wasserflüssen sowie weiteren DHC-Daten können die Strahlungsdaten zudem Aufschluss über verschiedene Aspekte der Morphogenese geben. Die Erkenntnisse aus TV1 dienen dem Prozessverständnis und bilden eine wichtige Basis für die Berechnung von Energie-, Wasser- und Kohlenstoffbilanzen ausgewählter Waldbestände. Sie fließen in die im Gesamtprojekt verwendeten Modelle ein und werden genutzt, um Zusammenhänge zwischen Energieinput, Wachstum und Stress zu quantifizieren. Die Strahlungsdaten dienen zudem der Verbesserung der Validierung von Fernerkundungsprodukten. Neben den genannten Forschungsaktivitäten übernimmt TV1 die Koordination des Verbundvorhabens und leitet die Bereiche Kommunikation und Transfer. Dazu gehört die Organisation von Projektmeetings und Workshops unter Einbezug relevanter AkteurInnen aus Forstpraxis und -verwaltung sowie die Entwicklung eines Leitfadens mit Handlungsempfehlungen für die Forstpraxis. Dieser soll basierend auf den Forschungsergebnissen zum Projektende veröffentlicht werden.
Das Wissen über die Menge, Zusammensetzung und Umsetzung der organischen Substanz in Böden der gemäßigten Breiten beschränkt sich bis auf wenige Ausnahmen auf die Oberböden (A-Horizonte und Auflagen) Hier finden sich die höchsten Konzentrationen der organischen Substanz. Jüngere Inventurarbeiten haben nun gezeigt, dass auch im Unterboden (B- und Cv-Horizonte) beträchtliche Mengen an organischer Substanz, allerdings in niedrigen Konzentrationen vorliegen. Ziel des geplanten Vorhabens ist es, (1) die Menge der organischen Substanz im Unterboden zu erfassen, (2) ihre Zusammensetzung und Herkunft zu bestimmen und (3) ihre Umsetzbarkeit zu erfassen. Daraus sollen Rückschlüsse auf die Stabilisierungsmechanismen der organischen Substanz im Unterboden gezogen werden. Nach einer Inventur der Bodenprofile an den SPP-Standorten (C-Gehalte, 14C-Alter) erfolgt die Erfassung der Zusammensetzung der organischen Substanz mittels Festkörper-13C-NMR-Spektroskopie. Die Zusammensetzung der Lipid-, Polysaccharid- und Ligninfraktion soll Hinweise auf die Herkunft der stabilisierten organischen Substanz differenziert nach oberirdischen, unterirdischen Pflanzenrückständen und mikrobiellen Resten geben. Abbauversuche unter kontrollierten Bedingungen im Labor und die Erfassung des 14C-Alters des freigesetzten CO2 sollen Aufschluss über die Umsetzbarkeit des 'jungen' und 'alten' C im Unterboden geben. Dabei werden jeweils die Profile über die gesamte Entwicklungstiefe untersucht, um die Ergebnisse der Unterbodenhorizonte in Bezug zu den Oberböden und zu den Ergebnissen anderer AG im SPP zu setzen. Darauf aufbauend können dann in den nächsten Phasen des SPP die Eigenschaften der organischen Substanz im Unterboden und die Regulation der C-Umsetzungen im Unterboden untersucht werden.
Urbane Emissionen von Kohlendioxid (CO2) und Methan (CH4) machen einen Großteil der Treibhausgasemissionen weltweit aus. Deshalb sind Städte auch Vorreiter bei der Entwicklung von Emissionsreduktionsmaßnahmen zur Mitigation des Klimawandels. Solche Maßnahmen müssen durch räumlich und zeitlich hochaufgelöste, vollständige, verlässliche und verifizierte Informationen begleitet und in Bezug auf ihre Effizienz überprüft werden. Unter den Beobachtungsmethoden für Treibhausgase gibt es allerdings eine Lücke im Bereich der horizontalen, flächendeckenden Kartierung auf der Skala einiger Kilometer. Dort braucht es eine Technik, die die Empfindlichkeitslücke zwischen lokalen in-situ Messungen und regional-integrierenden Säulenmessungen durch Fernerkundungsmessungen füllt.Hier schlage ich vor, urbane Treibhausgasquellen mit einer innovativen und portablen Technik zu studieren, die die CO2 und CH4 Konzentrationsfelder flächendeckend kartieren kann und so die Beobachtungslücke erfasst. Die erste Studienregion ist der Großraum Los Angeles, wo sich die CO2 und CH4 Emissionen auf mehr als 100 MtCO2/a und 300 ktCH4/a belaufen, was die Region zu einer der größten, lokalisierten Quellen weltweit macht. Los Angeles wurde in der Vergangenheit vielfältig in Bezug auf seine Treibhausgasquellen untersucht, indem beispielsweise Inventarisierungen durchgeführt und durch atmosphärische Messungen bewertet wurden. Ein herausragendes Experiment läuft gerade im Rahmen des CLARS-FTS (California Laboratory for Atmospheric Remote Sensing - Fourier Transform Spectrometer) – ein Spektrometer, das auf Mt. Wilson stationiert ist und reflektiertes Sonnenlicht aus dem Los Angeles Stadtgebiet einfängt. Wir haben eine portable Variante dieses Instruments entwickelt und schlagen nun vor beide Instrumente gemeinsam mit kalifornischen Partnern bei einer Feldkampagne zu betreiben.Dabei ist es unser Ziel das neue portable Observatorium zu validieren und für zukünftige Langfristvorhaben zu empfehlen. Dazu wollen wir innovative Beobachtungsmuster wie die Definition von Zoom-Regionen oder die Verwendung von gekreuzten Lichtwegen ausprobieren, um die räumliche und zeitliche Auflösung zu optimieren. Zudem werden wir die Genauigkeiten verbessern, indem wir einen neuen Ansatz der Strahlungstransportmodellierung implementieren, der simultan mit der Gasbestimmung auch die Streuung an atmosphärischen Partikeln berücksichtigt. Für die Fallstudie Los Angeles werden wir die Variabilität und die Gradienten der CO2 und CH4 Konzentrationen auf ihre Konsistenz mit den Emissionsinventaren überprüfen und untersuchen, bis zu welchem Grad sich die Einflüsse des meteorologischen Transports, der regionalen Advektion, episodischer Ereignisse und der urbanen Biosphäre unterscheiden lassen.
| Origin | Count |
|---|---|
| Bund | 1809 |
| Land | 5 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 1789 |
| Repositorium | 1 |
| Text | 13 |
| unbekannt | 10 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 1790 |
| Language | Count |
|---|---|
| Deutsch | 1664 |
| Englisch | 309 |
| Resource type | Count |
|---|---|
| Dokument | 12 |
| Keine | 1088 |
| Webseite | 714 |
| Topic | Count |
|---|---|
| Boden | 1211 |
| Lebewesen und Lebensräume | 1149 |
| Luft | 1081 |
| Mensch und Umwelt | 1813 |
| Wasser | 998 |
| Weitere | 1798 |