API src

Found 1828 results.

Similar terms

s/spectrometrie/Spektrometrie/gi

FT-IR Spektroskopie als schnelle Methode zur Bestimmung der biochemischen Zusammensetzung pflanzlicher Biomasse

Will man in ökologischen Stoffkreisläufen auch die Energieumsätze bestimmen, ist es erforderlich, den Nahrungswert der einzelnen Stufen in der Nahrungskette zu kennen. Für aquatische Stoffkreisläufe sind die Energieumsätze bislang nicht genau genug untersucht, um einigermaßen genaue Bilanzen aufstellen zu können, da eine ausreichend empfindliche und genaue Analytik nicht verfügbar ist. In dem Vorhaben soll die quantitative spektroskopische Bestimmung von Fetten, Kohlenhydraten und Proteinen, wie sie aus der Lebensmittelanalytik bekannt ist, so verfeinert werden, daß sie auf Phytoplankton anwendbar wird.

Mikroanalyse mit der laserinduzierten Plasmaspektroskopie (LIPS) und einem VUV-optimierten Echelle-Spektrographen

Ziel des Antrages ist der Einsatz der laserinduzierten Plasmaspektroskopie (LIPS) zur quantitativen orts- und tiefenaufgelösten Mikroanalyse mit einem neu zu entwickelnden VUV-Echelle-Spektrographen. LIPS erlaubt eine schnelle elementaranalytische Kartierung von Oberflächen ohne aufwendige Probenvorbereitung mit einer lateralen Auflösung von 3 bis 10 my m. Durch die Analyse der Spektren von einzelnen Pulsen kann eine Ortsauflösung mit einer entsprechenden Tiefenauflösung kombiniert werden. Die Verwendung eines Echelle-Spektrographen gestattet eine umfassende qualitative und quantitative multivariante Analyse von einzelnen Pulsen mit hoher spektraler Auflösung (l/dl größer als 10000) über einen Spektralbereich von 150 nm. Für den zu konzipierenden Echelle-Spektrographen wird ein Arbeitsbereich von 150 bis 300 nm angestrebt, so dass erstmals eine Multielement-VUV-Emissionsspektroskopie mit Laserplasmen für Nichtmetalle (S, P, N, O, C, As) oder metallische Elemente (Hg, Zn) möglich wird. Erste Anwendungen werden sich besonders auf geochemische und werkstoffwissenschaftliche Fragestellungen konzentrieren.

Neue Sichtweisen auf die Aerosol-Wolken-Strahlungs-Wechselwirkung mittels polarimetrischer und hyper-spektraler Messungen

Die Wechselwirkung von Wolken und Aerosol und ihre Rolle im Strahlungshaushalt der Erde ist ein Feld offener Fragen. Der IPCC (2014) nennt große Unsicherheiten und den Bedarf an zusätzlichen wissenschaftlichen Bemühungen, um die Vielzahl der Prozesse und deren Rolle für ein sich wandelndes Klima besser zu verstehen. Dieser Antrag hat die Entwicklung neuartiger Fernerkundungskonzepte zur Beobachtung einiger dieser Prozesse zum Ziel. Aerosol hat direkten Einfluss auf den Strahlungshaushalt und löst eine Serie von indirekten Effekten aus, indem es die Wolken-Mikrophysik, die Wolken-Dynamik, -Lebensdauer, den Wasserkreislauf und sogar die großskalige Zirkulation beeinflusst. Eigenschaften und räumliche Verteilung des Aerosols selbst ändern sich durch die Prozesse während der Wolkenpartikelbildung und ihrer Auflösung. Die Konzentration aktivierter Wolkenkondensationskeime (CCNC) spielt dabei eine entscheidende Rolle. CCNC kann in-situ nur mit sehr begrenzter räumlicher Abdeckung vermessen werden. Gleichzeitig kann sie nicht quantitativ mit herkömmlichen Fernerkundungsmethoden bestimmt werden, da die typische CCN Größe mehr als eine Größenordnung unterhalb der Wellenlänge sichtbarer Strahlung liegt. Daher wurde ein alternativer Ansatz vorgeschlagen: Messungen der von Wolkenseiten reflektierten Solarstrahlung ermöglichen die Ableitung von Vertikalprofilen der Partikelphase sowie ihrer Größe. Es wurde hypothetisiert, dass der Einfluss des Aerosols auf die Entwicklung der Mikrophysik so beobachtbar wird ebenso wie die Ableitung der CCNC. Alternativ kann CCNC auch aus Messungen optischer Eigenschaften der Aerosole abgeleitet werden. Der Zusammenhang zwischen optischer Dicke des Aerosols und CCNC wurde identifiziert, allerdings verbunden mit Unsicherheiten. Der Vorschlag, diese beiden Ansätze zu verbinden und die damit verbundenen Hypothesen zu testen, ist Kern dieses Antrags. Hyper-spektrale Beobachtungen mittels eines schnellen Scanners sind entscheidend, da Wolken sich sehr schnell verändern. Dazu soll ein abbildendes Spektrometer mit Polarisationsfiltern erweitert werden. Mit demselben Messgerät können dann die Mikrophysik der Wolken und die Eigenschaften des Aerosols im umgebenden wolkenlosen Bereich abgeleitet werden. Das Projekt ist im Wesentlichen in zwei Doktorarbeiten aufgeteilt. Highlights: 1) Test zweier Hypothesen, die Kern kommender Flugzeug-Kampagnen und geplanter Satellitenmissionen sind: CCNC kann aus Fernerkundung der Aerosoleigenschaften und aus Profilen der Wolkenmikrophysik abgeleitet werden. 2) Schnelle hyper-spektrale Scanner-Messungen ermöglichen Mikrophysik-Messungen veränderlicher Wolken. Erlauben diese Daten Ableitungen der Veränderung der Mikrophysik abhängig von der Entfernung zur Wolkenseite? 3) Ableitung von Aerosol-Eigenschaften aus polarisierten spektralen Messungen auch in bewölkten Situationen.

Die Wirkung der makromolekularen Adsorption auf die Stabilitaet von Suspensionen

Aufklaerung des Zusammenhangs zwischen der Struktur adsorbierter Polymerschichten auf suspendierten Partikeln und der Stabilitaet dieser Suspensionen. Untersuchungsmethoden: A) zur Adsorption: Spektroskopie (IR, NMR), Ellipsometrie, Kalorimetrie. B) zur Stabilitaet: Viskositaet, Sedimentation, Elektrophorese, Photokorrelationsspektroskopie.

Rolle der molekularen Zusammensetzung gelöster organischer Substanz (DOM) zur Identifizierung von Quellen und Freisetzung von DOM und Spurenelementen in Liefergebieten von Trinkwasserseen in Gebirgsregionen der mittleren Breiten (DOMtrace) Ein Festphasen Pyrolyse (Py-GC-MS, THM-GC-MS) Ansatz

Der Anstieg der Konzentrationen von gelöstem organischem Kohlenstoff (DOM) konnte in vielen Oberflächengewässern der temperierten Zonen der Nordhemisphäre nachgewiesen werden. Der Anstieg der DOM-Konzentrationen wird größtenteils auf die schnellere Zersetzung organischer Substanz und den erhöhten Austrag von DOM aus den Böden der Gewässereinzugsgebiete, hier speziell aus Torfmooren, in Flüsse und Seen zurückgeführt. Neben der Bedeutung des DOM im globalen Kohlenstoffkreislauf, auch im Zusammenhang mit Klimaveränderungen, verursacht die 'Gewässerverbraunung' Probleme im Zusammenhang mit der Trinkwassergewinnung. So vermindern hohe DOM-Gehalte, oft auch verbunden mit erhöhten Einträgen DOM-gebundener Schwermetalle, die Trinkwasserqualität und Erhöhen die Kosten der DOM-Entfernung. Obwohl die DOM-Zusammensetzung ein Schlüsselparameter für das Umweltverhalten von DOM ist, ist die Bedeutung seiner molekularen Zusammensetzung in Verbindung mit Landnutzung, Liefergebietsvegetation, Moorhydrologie und Schwermetalltransport kaum verstanden. Zusätzlich sind viele Waldgebiete und Moore in Mittelgebirgen aufgrund von jahrhundertelangem Bergbau oft mit Schwermetallen (Pb, Hg, Zn, etc.) und Arsen belastet. Im vorgeschlagenen Projekt soll das Phänomen des DOM-Anstiegs in Trinkwasserreservoiren am Beispiel der Eckertalsperre und seinem Liefergebiet im Harz untersucht werden. Der Anstieg der DOM-Konzentrationen wird dort bereits seit mehr als 10 Jahren beobachtet. Obwohl allgemein davon ausgegangen wird, dass eine erhöhte Torfzersetzung in Mooren die erhöhten DOM- und Schwermetallausträge verursacht, konnte dieses bisher nicht direkt nachgewiesen werden. Im Rahmen des vorgeschlagenen Projektes soll die molekulare Zusammensetzung von DOM im Eckertalstausee und seiner Zuflüsse, die sowohl schwermetallkontaminierte Moorgebiete als auch Waldböden entwässern, über einen Zeitraum von 12 Monaten regelmäßig zu untersuchen. Ziel ist es, die saisonale und räumlich Variabilität der Austräge und Quellen von DOM und seine Rolle als Transportmedium für Spurenstoffe als Funktion der molekularen DOM-Zusammensetzung zu verstehen. Anders als in früheren Studien wird der Schwerpunkt der Bestimmung der molekularen DOM-Zusammensetzung auf Festphasenanalysen mittel Pyrolyse-GC-MS und Thermally assisted Hydrolysis and Methylation -GC-MS unterstützt von spektroskopischen Methoden und Spurenelementanalysen liegen. Das beantragte Projekt soll somit, durch die Nutzung des Eckertalstausee-Systems als natürliches Labor, durch die Identifizierung der wichtigsten DOM-Quellen und deren chemischer Variabilität eine Lücke im Verständnis des biogeochemischen Verhaltens von DOM in der Umwelt schließen.

Charakterisierung der mit Natriumpyrophosphat löslichen, schwer abbaubaren organischen Bodensubstanz mittels FT-IR

Zusammensetzung und Menge der organischen Bodensubstanz (OBS) werden durch die Landnutzungsform beeinflußt. Die OBS läßt sich nach ihrer Abbaubarkeit und nach ihrer Löslichkeit in verschiedene Pools einteilen. So kann die wasserlösliche organische Bodensubstanz (DOM) als Maßzahl für die abbaubare OBS herangezogen werden. Mit Natriumpyrophosphat-Lösung als Extraktionsmittel läßt sich ein weit größerer Anteil der OBS erfassen, da der stabilisierende Bindungsfaktor zwischen OBS und Bodenmineralen entfernt wird. Extrahiert man zuerst mit Wasser und anschließend mit Natriumpyrophosphat-Lösung, erhält man im letzten Schritt den schwer abbaubaren OBS-Anteil. Über die funktionelle Zusammensetzung der organischen Substanz dieser Pools und deren Abhängigkeit von Landnutzungsformen ist relativ wenig bekannt. Ziel der geplanten Untersuchung ist es, den Pool der löslichen abbaubaren und schwer abbaubaren OBS zu quantifizieren und deren funktionelle Zusammensetzung mittels FT-IR Spektroskopie zu erfassen. Die so gewonnenen Daten sollen der Validierung von Kohlenstoffumsatz-Modellen (z.B. Roth 23.6) dienen und die im Modell berechneten Pools um einen qualitativen Term ergänzen

Zur Sorption von anorganischen und organischen Arsenverbindungen an Oxiden: Makroskopische und Spektroskopische Untersuchungen der Oberflächenkomplexierung

Es ist allgemein akzeptiert, dass die Sorption an oxidischen Mineralien den vorherrschenden natürlichen Mechanismus zur Verringerung der Mobilität von Schadstoffen darstellt. Um die potentielle Remobilisierbarkeit abschätzen zu können, ist es jedoch nicht ausreichend, die Sorption in konventionellen Batch- oder Säulen-Versuchen zu untersuchen, da hierbei nur eingeschränkt auf bestimmte Scenarien abgezielt werden kann. Vielmehr ist die lokale Struktur der sich bildenden Oberflächenbindungen zu charakterisieren, um daraus die Entwicklung der Bindungsstärken bei Veränderung der physikochemischen Eigenschaften des Milieus voraussagen zu können. Strukturelle Kenntnisse durch Oberflächenspektroskopie erlauben zum einen, qualitativ die Stabilität der Oberflächenkomplexe abzuschätzen (einzahnig oder mehrzahnig). Zum anderen ermöglichen sie es, einen Bezug zwischen der mikroskopischen Struktur und den vorliegenden oder zu prognostizierenden makroskopischen Mobilitätsdaten als dualen Ansatz eines realitätsnahen Adsorptionsmodells herzustellen. Die Auseinandersetzung mit diesem modernen dualen Ansatz ist bisher in der umweltgeochemischen Lehre und Forschung in Deutschland wenig vertreten und sollte daher eine Bereicherung mit guten Aussichten auf Erfolg darstellen.

KI gestützte, spektroskopische Ermittlung der Alterung von Kunststoffen beim mechanischen Recycling, Teilvorhaben: Entwicklung einer Harmonisierungs-KI zur Vereinheitlichung und besseren Übertragbarkeit von spektralen Daten

Quantifizierung der Gerinnespeicherung von kohäsiven Feinpartikeln im Verlauf von künstlich erzeugten Hochwasserwellen und stationären Trockenwetterrandbedingungen

Kohäsive Feinpartikel sind potentielle Träger von anorganischen und organischen Schadstoffen und spielen eine entscheidende Rolle beim Stoffaustausch zwischen Wasserkörper, Schwebstoff und Sediment. Daher ist die Kenntnis der Depositionsdynamik dieser Feinpartikel ein wichtiger Baustein für ein effizientes Sedimentmanagement und eine physikalisch basierte Modellierung des Schadstofftransfers in Fließgewässern. Es überrascht jedoch, dass sich Untersuchungen zum Transport- und Sedimentationsverhalten kohäsiver Partikel bisher häufig auf definierte stationäre Randbedingungen im Labormaßstab und Trockenwetterbedingungen im Gelände konzentrieren. Weitgehend ungeklärt ist hingegen das Verhalten von Feinpartikeln und deren Speicherung im Gerinnebett während der dynamischen Phase von Hochwasserereignissen. Um die im Gerinne ablaufenden Prozesse weitgehend unabhängig von den Einzugsgebietsprozessen zu untersuchen hat sich in unserer Arbeitsgruppe seit nunmehr über 10 Jahren ein Ansatz mit künstlich generierten Hochwasserwellen bewährt. Es ist ein genereller Vorteil von solchen Geländeexperimenten, dass einzelne steuernde Größen ausgeschlossen oder gezielt kontrolliert werden können. Außerdem ist ein solcher Ansatz eine Voraussetzung, um die Aussagekraft experimentell gewonnener Laborergebnisse zur potentiell hohen Feinpartikel-Retention in Sand- und Kiessedimenten in einem natürlichen System zu validieren. Das übergeordnete Ziel des hier beantragten Projekts ist es, die Gerinnespeicherung kohäsiver Feinpartikel in einem natürlichen System bei variierenden hydrologisch-hydraulischen Randbedingungen zu quantifizieren. Zu diesem Zweck werden standardisierte Feinpartikeltracer (Kaolinit, d50 = 2ìm, ñ = 2,6 g/cm3) sowohl im Verlauf von künstlich generierten Hochwasserwellen als auch während stationärer Trockenwetterbedingungen in einen Mittelgebirgsbach induziert. Die Retention und Sedimentation der eingegebenen Feinpartikel wird gezielt in kleinräumig variierenden Flussbettstrukturen (Hyporheische Zone, Stillwasserzonen, Gerinnerandbereiche, Riffle-Pool-Sequenzen) und für einzelne Gerinneabschnitte erfasst. Die Quantifizierung der Speicherung erfolgt mit bereits erprobten Resuspensionstechniken und Sedimentfallen sowie einer in Pilotprojekten erfolgreich getesteten Tracerfrachtberechnung mittels FTIR-DRIFT Spektroskopie an mehreren Basismessstationen im Längsprofil. In einem interdisziplinären Forscherverbund mit Kollegen des 'Hydraulics Laboratory' und des 'Dept. of Civil Engineering' der Universität Gent, der 'Ecosystem Management Research Group, Dept. of Biology' der Universität Antwerpen und des 'Dept. of Hydrology and Hydraulic Engineering' der Freien Universität Brüssel in Belgien wird darüber hinaus die Transport- und Speicherdynamik der Feinpartikel mit der neuen, FORTRAN basierten Modellierungssoftware 'FEMME' ('Flexible Environment for Mathematically Modelling the Environment') abgebildet.

Dissolved organic matter driven changes in minerals and organic-mineral interactions during paddy soil development

Previous studies indicated that the development and biogeochemistry of paddy soils relates to the parent material, thus the original soil paddies derive from. The proposed research focuses on redox-mediated changes in mineral composition and mineral-associated organic matter (OM) during paddy transformation of different soils. We plan to subject soil samples to a series of redox cycles, in order to mimic paddy soil formation and development. Soils with strongly different properties and mineral composition as well as at different states of paddy transformation; ranging from unchanged soils to fully developed paddy soils, are to be included. We hypothesize that dissolved organic matter is one key driver in redox-mediated transformations, serving as an electron donator as well as interacting with dissolved metals and minerals. The extent of effects shall depend on the parent soil's original mineral assemblage and organic matter and their mutual interactions. The experimental paddy soil transformation will tracked by analyses of soil solutions, of the (re-)distribution of carbon (by addition of 13C-labelled rice straw), of indicative biomolecules (sugars, amino sugars, fatty acids, lignin) and of minerals (including the redox state of Fe). For analyses of organic matter as well as of mineral characteristics we plan to utilize EXAFS and XPS, for Fe-bearing minerals also Mößbauer spectroscopy. This approach of experimental pedology seems appropriate to give insight into the major factors during paddy soil formation and development.

1 2 3 4 5181 182 183