s/spectrometrie/Spektrometrie/gi
Die Festlegung von gelöster organischer Substanz im intrapartikulären Raum von Mineralclustern, insbesondere in sogenannter Mikro- und Mesoporen (A kleiner 2-50 nm) kann über physikalischem Ausschluss von Exoenzymen zur Stabilisierung organischer Substanzen führen. Ziel der geplanten Arbeiten ist die Quantifizierung des Beitrags dieses Prozesses zur Bildung stabiler organischer Bodensubstanz. Dazu werden verschiedene Mineralphasen mit natürlicher organischer Substanz belegt. Diese Proben werden im Vergleich zu Bodenproben der vier Referenzstandorte hinsichtlich der Verteilung der organischen Bodensubstanz im intrapartikulären Porenraum untersucht. Gasadsorption (N2, CO2) und Hg-Porosimetrie erlauben Aussagen zur Inkorporation von organischer Substanz in Abhängigkeit von spezifischer Oberfläche, Porengrößenverteilung und Porengeometrie. Die Kombination verschiedener mikroskopischer (TEM, ESEM), mikrospektroskopischer Methoden (XPS, SANS/SAXS, ESI, EELS) liefert detaillierte Informationen zu Ausmaß und Art der Festlegung von organischer Substanz in den intrapartikulären Porenräumen. Die Arbeiten haben ferner zum Ziel, eine geeignete Strategie für zukünftige enzymatische Abbauversuche zu entwickeln, mit denen die Umsatzraten der so stabilisierten organischen Komponenten quantifiziert werden können.
Beim Übergang der Pflanzen vom Wasser- zum Landleben haben komplexe phenolische Verbindungen (Lignin) und natürliche Polyester (Cutin, Suberin) eine wichtige Rolle gespielt indem sie neue Grenzflächen und Oberflächen mit hydrobisierenden Eigenschaften ermöglichten. Die Einlagerung von Lignin zwischen den Cellulose Mikrofibrillen und Hemicellulosen war wesentlich für die Entwicklung funktionsfähiger Leitbahnen (Xylem) und die mechanische Festigkeit. An den Grenzflächen zur Luft musste der Wasserverlust minimiert werden, was durch die Einlagerung von Cutin (Blätter) und Suberin (Stamm, Wurzel) erreicht wurde. Auch wenn Basiswissen über die drei Polymere vorhanden ist, macht sie ihre große Variabilität sowohl im Vorkommen als auch in ihrer Zusammensetzung und offene Fragen bezüglich der Polymerisation zu den am wenigsten verstandenen pflanzlichen Polymeren. Durch die Adaptionen um in den sehr vielfältigen Lebensräumen zu überleben entwickelten sich verschiedenartigste Erscheinungsformen, die hoch spezialisierte Gewebe erfordern um damit unterschiedliche Eigenschaften und Funktionen zu erfüllen. Das wird erreicht durch eine sich ändernde Zusammensetzung und Struktur auf den verschieden hierarchischen Ebenen (mm-ìm-nm) und es gibt immer noch eine große Wissenslücke bezüglich Verteilung der Polymere und Struktur auf Mikro- und Nanoebene. Wir werden diese Lücke durch die Anwendung von Raman Imaging und Rasterkraftmikroskopie (AFM) füllen. Raman Imaging ermöglicht die chemische Zusammensetzung auf Mikroebene zu verfolgen und AFM ergänzt durch die Aufklärung von Nanostruktur und -mechanik. Jedes Raman-Image basiert auf Tausenden von Spektren, wovon jedes ein molekularer Fingerabdruck der Zellwand auf Mikroebene ist. Derzeit gelingt es nur einen Teil der chemischen und strukturellen Informationen die in der Raman-Signatur stecken, zu extrahieren. Durch mehr Wissen über die Raman-Spektren der Pflanzen und ihrer Komponenten und neue Ansätze der multivariater Datenanalyse wollen wir mehr Informationen zugänglich machen. Um auf Nano-Ebene die chemische Zusammensetzung von kleinsten Oberflächen und Grenzflächen zu entschlüsseln, werden wir Tip-enhanced Raman-Spektroskopie (TERS) anwenden. Mit diesen anspruchsvollen in-situ Ansätze werden wir 1) die Lignifizierung innerhalb der nativen Zellwand verfolgen und ungelöste Fragen rund um die Lignin Polymerisation angehen 2) die Chemie und Struktur der Tracheiden und Gefäßwände auf Mikro-und Nano-Ebene und etwaige Auswirkungen auf die hydraulischen und mechanischen Eigenschaften aufklären 3) die Mikrochemie und Nanostruktur von Cuticula und Periderm und ihren Einfluss auf die Barriereeigenschaften entschlüsseln und 4) beantworten ob Trockenstress sich auch auf der Mikroebene und Nanoebene widerspiegelt. Neue Einblicke in die Variabilität, Verteilung und Zusammensetzung der Pflanzenpolymere und den Einfluss von Trockenstress werden gewonnen und wichtige Struktur-Funktions-Beziehungen aufgeklärt. usw.
Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.
Pflanzen können zwischen 10 und 80% ihres P-Bedarfs aus Unterböden decken, aber in welchen Bindungsformen P im Unterboden von Wäldern vorliegt, wie gut es dort zugänglich ist und v.a. wie lange der Sauerstoff in den Unterboden-Phosphaten verweilt, ist nur wenig verstanden. Dieses Projekt hat zum Ziel, die Hypothese zu testen, dass mit zunehmendem P-Mangel im Oberboden die Pflanzen verstärkt auf P im Unterboden zugreifen. Als Grundlage hierfür werden wir in der ersten Phase des SPP aufklären, (i) wie hoch die P-Vorräte in den Unterboden der Versuchsstandorte sind, welche Bindungsformen dominieren und welche delta18O-Signaturen Bodenphosphate dort aufweisen, (ii) wie Pflanzenwurzeln die P-Gradienten im Unterboden verändern, (iii) wie gut die Phosphate im Unterboden für Mikroorganismen und damit 18Oisotopenaustauschreaktionen zugänglich sind, (iv) ob und wie abiotische, positionsabhängige isotopenaustauschreaktionen stattfinden können, anhand derer sich Informationen zur Verweilzeit der Phosphate im Unterboden ableiten lassen, und (v) welche Zusammenhänge zur Isotopensignatur in Phosphaten des Xylemsaftes bestehen. Die P-Bindungsformen und Konzentrationen werden mittels sequenziellen Fraktionierungsverfahren, NanoSIMS, XANES-und NMR-Spektroskopie erfasst. Isotopenbestimmungen und -austauschexperimente erfolgen mittels massenspektrometrischen und Raman-spektroskopischen Analysen unter Einbeziehung quantenchemischer Modellierungen.
Ziel des Antrages ist der Einsatz der laserinduzierten Plasmaspektroskopie (LIPS) zur quantitativen orts- und tiefenaufgelösten Mikroanalyse mit einem neu zu entwickelnden VUV-Echelle-Spektrographen. LIPS erlaubt eine schnelle elementaranalytische Kartierung von Oberflächen ohne aufwendige Probenvorbereitung mit einer lateralen Auflösung von 3 bis 10 my m. Durch die Analyse der Spektren von einzelnen Pulsen kann eine Ortsauflösung mit einer entsprechenden Tiefenauflösung kombiniert werden. Die Verwendung eines Echelle-Spektrographen gestattet eine umfassende qualitative und quantitative multivariante Analyse von einzelnen Pulsen mit hoher spektraler Auflösung (l/dl größer als 10000) über einen Spektralbereich von 150 nm. Für den zu konzipierenden Echelle-Spektrographen wird ein Arbeitsbereich von 150 bis 300 nm angestrebt, so dass erstmals eine Multielement-VUV-Emissionsspektroskopie mit Laserplasmen für Nichtmetalle (S, P, N, O, C, As) oder metallische Elemente (Hg, Zn) möglich wird. Erste Anwendungen werden sich besonders auf geochemische und werkstoffwissenschaftliche Fragestellungen konzentrieren.
Das Wissen über die Menge, Zusammensetzung und Umsetzung der organischen Substanz in Böden der gemäßigten Breiten beschränkt sich bis auf wenige Ausnahmen auf die Oberböden (A-Horizonte und Auflagen) Hier finden sich die höchsten Konzentrationen der organischen Substanz. Jüngere Inventurarbeiten haben nun gezeigt, dass auch im Unterboden (B- und Cv-Horizonte) beträchtliche Mengen an organischer Substanz, allerdings in niedrigen Konzentrationen vorliegen. Ziel des geplanten Vorhabens ist es, (1) die Menge der organischen Substanz im Unterboden zu erfassen, (2) ihre Zusammensetzung und Herkunft zu bestimmen und (3) ihre Umsetzbarkeit zu erfassen. Daraus sollen Rückschlüsse auf die Stabilisierungsmechanismen der organischen Substanz im Unterboden gezogen werden. Nach einer Inventur der Bodenprofile an den SPP-Standorten (C-Gehalte, 14C-Alter) erfolgt die Erfassung der Zusammensetzung der organischen Substanz mittels Festkörper-13C-NMR-Spektroskopie. Die Zusammensetzung der Lipid-, Polysaccharid- und Ligninfraktion soll Hinweise auf die Herkunft der stabilisierten organischen Substanz differenziert nach oberirdischen, unterirdischen Pflanzenrückständen und mikrobiellen Resten geben. Abbauversuche unter kontrollierten Bedingungen im Labor und die Erfassung des 14C-Alters des freigesetzten CO2 sollen Aufschluss über die Umsetzbarkeit des 'jungen' und 'alten' C im Unterboden geben. Dabei werden jeweils die Profile über die gesamte Entwicklungstiefe untersucht, um die Ergebnisse der Unterbodenhorizonte in Bezug zu den Oberböden und zu den Ergebnissen anderer AG im SPP zu setzen. Darauf aufbauend können dann in den nächsten Phasen des SPP die Eigenschaften der organischen Substanz im Unterboden und die Regulation der C-Umsetzungen im Unterboden untersucht werden.
Urbane Emissionen von Kohlendioxid (CO2) und Methan (CH4) machen einen Großteil der Treibhausgasemissionen weltweit aus. Deshalb sind Städte auch Vorreiter bei der Entwicklung von Emissionsreduktionsmaßnahmen zur Mitigation des Klimawandels. Solche Maßnahmen müssen durch räumlich und zeitlich hochaufgelöste, vollständige, verlässliche und verifizierte Informationen begleitet und in Bezug auf ihre Effizienz überprüft werden. Unter den Beobachtungsmethoden für Treibhausgase gibt es allerdings eine Lücke im Bereich der horizontalen, flächendeckenden Kartierung auf der Skala einiger Kilometer. Dort braucht es eine Technik, die die Empfindlichkeitslücke zwischen lokalen in-situ Messungen und regional-integrierenden Säulenmessungen durch Fernerkundungsmessungen füllt.Hier schlage ich vor, urbane Treibhausgasquellen mit einer innovativen und portablen Technik zu studieren, die die CO2 und CH4 Konzentrationsfelder flächendeckend kartieren kann und so die Beobachtungslücke erfasst. Die erste Studienregion ist der Großraum Los Angeles, wo sich die CO2 und CH4 Emissionen auf mehr als 100 MtCO2/a und 300 ktCH4/a belaufen, was die Region zu einer der größten, lokalisierten Quellen weltweit macht. Los Angeles wurde in der Vergangenheit vielfältig in Bezug auf seine Treibhausgasquellen untersucht, indem beispielsweise Inventarisierungen durchgeführt und durch atmosphärische Messungen bewertet wurden. Ein herausragendes Experiment läuft gerade im Rahmen des CLARS-FTS (California Laboratory for Atmospheric Remote Sensing - Fourier Transform Spectrometer) – ein Spektrometer, das auf Mt. Wilson stationiert ist und reflektiertes Sonnenlicht aus dem Los Angeles Stadtgebiet einfängt. Wir haben eine portable Variante dieses Instruments entwickelt und schlagen nun vor beide Instrumente gemeinsam mit kalifornischen Partnern bei einer Feldkampagne zu betreiben.Dabei ist es unser Ziel das neue portable Observatorium zu validieren und für zukünftige Langfristvorhaben zu empfehlen. Dazu wollen wir innovative Beobachtungsmuster wie die Definition von Zoom-Regionen oder die Verwendung von gekreuzten Lichtwegen ausprobieren, um die räumliche und zeitliche Auflösung zu optimieren. Zudem werden wir die Genauigkeiten verbessern, indem wir einen neuen Ansatz der Strahlungstransportmodellierung implementieren, der simultan mit der Gasbestimmung auch die Streuung an atmosphärischen Partikeln berücksichtigt. Für die Fallstudie Los Angeles werden wir die Variabilität und die Gradienten der CO2 und CH4 Konzentrationen auf ihre Konsistenz mit den Emissionsinventaren überprüfen und untersuchen, bis zu welchem Grad sich die Einflüsse des meteorologischen Transports, der regionalen Advektion, episodischer Ereignisse und der urbanen Biosphäre unterscheiden lassen.
Reflexionsspektren von Pflanzen und Pflanzenbestaenden in Abhaengigkeit von Schadfaktoren.
| Origin | Count |
|---|---|
| Bund | 1808 |
| Land | 5 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 1788 |
| Repositorium | 1 |
| Text | 13 |
| unbekannt | 10 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 1789 |
| Language | Count |
|---|---|
| Deutsch | 1663 |
| Englisch | 305 |
| Resource type | Count |
|---|---|
| Dokument | 12 |
| Keine | 1090 |
| Webseite | 711 |
| Topic | Count |
|---|---|
| Boden | 1193 |
| Lebewesen und Lebensräume | 1163 |
| Luft | 1070 |
| Mensch und Umwelt | 1812 |
| Wasser | 997 |
| Weitere | 1795 |