API src

Found 36 results.

Early Miocene intensification of the North African hydrological cycle: multi-proxy evidence from the shelf carbonates of Malta - Geochemical data

A total of 140 samples were collected from the il-Blata section outcropping on the Mediterranean Island of Malta (base of section at 35.9004˚N, 14.3309˚E, top of section at 35.9000˚N, 14.3314˚E). 16 of these samples were selected to determine the 87Sr/86Sr in the bulk sediment and used to generate numerical ages using the LOWESS FIT for Sr-Stratigraphy (McArthur et al., 2012). All 87Sr/86Sr measurements conducted at the University of Geneva using a Thermo Neptune PLUS Multi-Collector inductively coupled plasma mass spectrometer. Data and numerical age model presented in table S1. The εNd data from (Bialik et al., 2019) were recalibrated to fit the new age model and presented in table S2. The percentage carbonate matter was measured using a FOGl digital calcimeter at the University of Malta (table S3). Dry powders were used to generate a stable isotope (δ18O & δ13C) record (table S4), all measurements were conducted on a Gasbench II coupled to a Thermo Delta V Advantage isotope ratio mass spectrometer at the School of Earth and Environmental Sciences, Cardiff University. Dry bulk sediment powders were also used to obtain major element composition and calculate element ratios Sr/Ca, Ti/Al, K/Al, Zr/Al, Si/Ti. All element measurements were conducted at The School of Earth and Environmental Sciences, Cardiff University using a hand-held Olympus Delta Innov-X XRF gun. Element data presented in table S5. Mean values of the ratios Sr/Ca, Ti/Al, K/Al, Zr/Al and Si/Ti were obtained for three different parts in the section in order to determine regime changes (table S6).

Stabile Isotopenanalyse der Nahrung von Elateridenlarven

Die Nahrungswahl von Drahtwürmern (Coleoptera: Elateridae) im Agrarland und ihre Beeinflussung durch Umweltfaktoren analysiert mittels Stabiler Isotope. Als Drahtwürmer werden die Larven der Schnellkäfer (Coleoptera: Elateridae) bezeichnet, welche häufig in Agrarböden anzutreffen sind. Die meisten Drahtwurmarten sind polyphag und fressen neben Wurzeln auch abgestorbenes Pflanzenmaterial. Bestimmte Arten treten jedoch weltweit als bedeutende Schädlinge an verschiedensten Kulturpflanzen auf. Es wird angenommen, dass bestimmte Bodenparameter (z.B. Humusgehalt, Feuchte) und die Fruchtfolge die Nahrungswahl der Drahtwürmer entscheidend beeinflussen. Im Freiland konnten diese Beziehungen bis heute jedoch nicht nachgewiesen werden. Ein besseres Verständnis der Wechselwirkung zwischen diesen Faktoren und der Nahrungswahl der Drahtwürmer würde aber die Einschätzung der tatsächlichen Rolle bestimmter Drahtwurmarten erheblich erleichtern und eine Basis für die Vorhersage und Kontrolle von Drahtwurmschäden darstellen. Im vorliegenden Projekt wird erstmals die Stabile-Isotopen-Methode angewandt, um die Nahrungswahl von Elateridenlarven zu untersuchen. Dabei geben die unter Freilandbedingungen gewonnenen Isotopendaten der Drahtwürmer darüber Auskunft, von welchen Nahrungssubstraten sich diese Tiere ernähren. Zusätzliche Laborexperimente ergänzen die Befunde aus dem Freiland und helfen bei ihrer Interpretation. Um allgemeine Aussagen über die Nahrungswahl von Drahtwürmern in Mitteleuropa zu erhalten, werden verschiedenste Standorte in Österreich und Deutschland beprobt. Weiters wird das Nahrungswahlverhalten mit bestimmten Bodenparametern in Beziehung gesetzt, um zu analysieren, wie diese Parameter die Nahrungswahl der Drahtwürmer und ihr Schadpotential beeinflussen. Die Ergebnisse dieses Projektes stellen damit eine Basis für alle weiteren Schritte zur Entwicklung von Regulationsmaßnahmen bei Drahtwürmern dar.

Compilation of stable nitrogen and carbon isotope ratios of marine biota from the central and Northeast Atlantic, and the Mediterranean Sea

Bulk stable isotope ratios, primarily of carbon (δ13C) and nitrogen (δ15N), are increasingly used to examine predator-prey interactions and food web structure. We compiled δ13C and δ15N values of marine taxa from 56 published sources to support investigations on trophic interactions in mesopelagic food webs and assess the importance of mesopelagic organisms in the marine ecosystem. A total of 2095 records were collected, representing 8716 individual organisms from 349 unique species or genera sampled across the central and Northeast Atlantic, and the Mediterranean Sea, between 1905 and 2020. Records include 185 benthic and pelagic fish, 47 cephalopods, 31 marine mammals, 30 crustaceans, 26 elasmobranchs, 16 seabirds, 4 marine turtles, 4 jelly fish, 3 copepods, 2 salps, in addition to data from several organisms only identified to higher taxonomic ranks (family or above). The dataset includes isotopic ratios measured in the tissues or in the whole body of individual organisms, or mean values (and standard deviations) from pooled samples. Because lipids have more negative δ13C values relative to other major biochemical compounds in plant and animal tissues (DeNiro & Epstein, 1977), many studies correct for the lipid effect by extracting lipids from samples before analysis, or a posteriori, through mathematical corrections (Post, 2002). Therefore, δ13C values were reported as uncorrected, lipid-extracted, or mathematically-corrected. When available, the total organic carbon to nitrogen ratio (C:N) was included. For each data record, we also provided the sampling location, geographic coordinates, month and year of sample collection, method of sample collection, taxonomic ranks (phylum, class, order, family), number and size (or size range) of sampled organisms, as well as the reference and DOI of the original data source, for further details on the samples analysed and/or the analytical techniques used.

Dataset to: Sourcing and Long-Range Transport of Particulate Organic Matter in River Bedload: Rio Bermejo, Argentina

The data package encompasses field data of clastic and organic sediment, river width and flow velocities of six river transects along the Rio Bermejo, Argentina. The laboratory data entails long-chain n-alkanes and d2H and d13C values of organic matter (soil, deposited sediment, suspended sediment (published by Repasch et al., 2020), leaf litter, floating organic matter, and bedload organic matter from the Rio Bermejo catchment. It further contains the bedload organic matter and estimated bedload organic carbon fluxes of six river transects along the Rio Bermejo. Fluvial transport of organic carbon from the terrestrial biosphere to the oceans is an important term in the global carbon cycle. Traditionally, the long-term burial flux of fluvial particulate organic carbon (POC) is estimated using river suspended sediment flux; however, organic carbon can also travel in river bedload as coarse particulate organic matter (POMBed). Estimates of fluvial POC export to the ocean are highly uncertain because few studies document POMbed sources, flux and evolution during long-distance fluvial transport from uplands to ocean basins. This knowledge gap limits our ability to determine the global terrestrial organic carbon burial flux. In this study we investigate the flux, sources and transformations of POMBed during fluvial transport over a ~1300 km long reach of the Rio Bermejo, Argentina, which has no tributary inputs. To constrain sourcing of POMBed, we analysed the composition and stable hydrogen and carbon isotope ratios (δ2H, δ13C) of plant wax biomarkers from POMBed at six locations along the Rio Bermejo, and compared this to samples of suspended sediment, soil, leaf litter and floating organic debris (POMfloat) from both the lowland and headwater river system. Across all samples, we found no discernible differences in n-alkane average chain length or nC29 δ13C, indicting a common origin for all sampled POMBed. We define three potential POMBed sources: Coarse organic debris we sampled at distinct elevations in the catchment: floodplain leaf litter, headwater leaf litter, and headwater POMfloat. We aim to understand the mixing range of the widely spread POMBed. We determine the range of a possible POMBed mixing signal of the sources within the geochemical parameters, and in addition, determine potential missing POMBed sources, using a mixing-space model developed by (Smith et al., 2013). Leaf litter and POMfloat nC29 δ2H values decrease with elevation, making it a useful proxy for POMBed source elevation. Biomarker δ2H values suggest that POMBed is a mix of distally-derived headwater and locally-recruited floodplain sources at all sampling locations. These results indicate that POMBed can be preserved during transport through lowland rivers for hundreds of kilometres. However, the POMBed flux decreases with increasing transport distance, suggesting mechanical comminution of these coarse organic particles, and progressive transfer into the suspended load. Our provisional estimates suggest that the carbon flux from POMBed comprises less than 1 percent of the suspended load POC flux in the Rio Bermejo. While this represents a small portion of the river POC flux, this coarse, high density material likely has a higher probability of deposition and burial in sedimentary basins, potentially allowing it to be more effective in long-term CO2 drawdown relative to fine suspended particles. Because the rate and ratio of POMBed transport versus comminution likely varies across tectonic and climatic settings, additional research is needed to determine the importance of POMBed in the global carbon cycle.

Compilation of data to assess trophic interactions in mesopelagic food webs in the central and Northeast Atlantic, and in the Mediterranean Sea

Mesopelagic organisms play a critical role in marine ecosystems, channelling energy and organic matter across food webs and serving as the primary prey for many open-ocean predators. Nevertheless, trophic pathways involving mesopelagic organisms are poorly understood and their contribution to food web structure remains difficult to assess (St. John et al., 2016). Existing data to assess mesopelagic feeding interactions and energy transfer are scattered in the literature or remain unpublished, making it difficult to locate and use such datasets. As part of the EU funded project SUMMER - Sustainable Management of Mesopelagic Resources H2020-BG-2018-2, GA: 817806) (https://summerh2020.eu/), we created MesopTroph, a georeferenced database of diet, trophic biogeochemical markers, and energy content of mesopelagic organisms and other marine taxa from the Northeast Atlantic and Mediterranean Sea, compiled from 191 published and non-published sources. MesopTroph includes seven datasets: (i) diet compositions from stomach content analysis, (ii) stable isotopes of carbon and nitrogen (δ13C and δ15N), (iii) fatty acid trophic markers (FATM), (iv) major and trace elements, (v) energy density, (vi) estimates of diet proportions, and (vii) trophic positions. The database contains information from 4918 samples, representing 51119 specimens from 499 species or genera, covering a wide range of trophic guilds and taxonomic groups. Metadata provided for each record include the location, dates and method of sample collection, taxonomic ranks (phylum, class, order, family), number and size (or size range) of sampled organisms, method/model used in data analysis, reference and DOI of the original data source. Compiled data were checked for errors, missing information, and to avoid duplicate entries, and scientific names and taxonomy were standardized.

Calcium carbonate from the Il-Blata section, Malta Island (S3)

Hydrochemistry and stable oxygen (δ18O) and hydrogen (δ2H) isotopic composition of surface water and ground water and mineralogy, in the Pra Basin (Ghana) West Africa

The crystalline aquifer in Ghana’s Pra Basin provides water for over 4 million people as many rivers are polluted by artisanal mining. The aim of the data collection was to understand the origin, quality and chemical evolution of surface water and ground water in order to improve the sustainable management of the resource. Here, we present data on major ions, trace metals, stable oxygen (δ18O) and hydrogen (δ2H) isotope ratios of surface water and ground water and mineralogical composition of rock outcrops from the Pra Basin in Ghana. The field campaign took place in March 2020 (water sampling) and August 2021 (outcrop sampling). A total of 34 surface water and 56 ground water samples were collected from rivers, public boreholes (depth >30 m) and hand-dug wells (depth < 10 m), respectively. The water samples were analysed for cations and trace metals using the Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The anions were analysed using the Ion Chromatography (IC). For the stable oxygen (δ18O) and hydrogen (δ2H) isotope ratios, a Picarro L-2140i Ringdown Spectrometer was used. The bulk elemental composition of the rock samples was analysed by X-ray fluorescence (XRF). The mineralogic composition was determined by X-ray diffraction (XRD) while the Zeiss Axiophot petrographic microscope was used for the petrographic thin section analysis. The data generated from all measurements are provided in a .zip folder consisting of four subfolders. Each folder contains Excel files discussed in the file inventory section.

Carbon and oxygen isotopic compositions of Permian and Carboniferous brachiopod shells from the United States and Russia, collected in 2008, along with metadata for shell preservation (cathodoluminescence, trace element compositions)

Carbon and oxygen isotopic compositions of Permian and Carboniferous brachiopod shells from Russia, the United States and various world-wide localities along with metadata for shell preservation (cathodoluminescence, trace element compositions)

To evaluate the isotopic record of climate change and carbon sequestration in the Late Paleozoic, we have compiled new and published oxygen and carbon isotopic measurements of more than 2000 brachiopod shells from Carboniferous through Middle Permian (359-260 Ma) strata worldwide. We focus on the isotopic records from the U.S. Midcontinent and the Russian Platform because these two regions provide well-preserved marine fossils spanning a broad time interval. Brachiopod shells were processed and screened for diagenesis by different methods depending on the research group. Some groups crush shells and pick clear crystals under the microscope. Five to ten milligrams of Ca carbonate are analyzed for trace and minor elements (Mg, Sr, Fe, Mn). Other research groups thin-section shells and use cathodoluminscence and plane light microscopy to screen for diagenesis. Nonluminescent shell is microsampled (0.05-0.1 mg) on the thin-section or complementary billet. All research groups use isotope ratio mass spectrometer for carbon (13C/12C) and oxygen (18O/16O) analyses. These data are used to examine paleotemperatures and their relation to climate in the past.

Stable isotope (2H and 18O) depth profiles of pore waters and inferred soil physical parameters in the Attert catchment, Luxembourg

Depth profiles of stable water isotopes in the soil provide important information on flow and transport processes in the subsurface. We sampled depth profiles of stable water isotopes (2H and 18O) in the pore waters on two occasions at 46 sites in the Attert catchment, Luxembourg and are partly located in mixed deciduous forest and partly on grassland. These sites correspond to the sensor cluster sites of the DFG research unit CAOS. Sampling took place once between February 2012 and October 2013 and once in June 2014. Sampling procedure: We took 1-3 soil cores of 8 cm diameter in close proximity with a percussion drill (Atlas Copco Cobra, Stockholm, Sweden) at each study site within a radius of 5 m from the soil moisture sensor profiles. We drilled as deep as possible and divided the extracted soil cores into subsamples of 5 to 10 cm length and sealed the material in air tight bags (Weber Packaging, Güglingen, Germany). The soil sample depths were corrected for compaction during the drilling pro-cess and are provided as the mean depth of 5 or 10 cm soil core subsamples. For isotope analyses of the pore water, we used the direct equilibration method (Wassenaar et al., 2008). Analyses were carried out at the Chair of Hydrology, University of Freiburg. We provide detailed information about the laboratory analyses in Sprenger et al. (2015) and Sprenger et al. (2016) and the data description associated with the data.

1 2 3 4