API src

Found 927 results.

Funktionelle Stabilität eines maßgeschneiderten N-fixierenden Mikrobioms unter sich verändernden Umweltbedingungen

Die landwirtschaftliche Pflanzenproduktion ist ein ressourcenintensiver Prozess, der durch den Klimawandel zunehmend beeinträchtigt wird. Lösungen für eine nachhaltigere und widerstandsfähigere Art der Pflanzenproduktion sind daher dringend erforderlich. Pflanzenwurzeln sind ein Lebensraum für hochkomplexe mikrobielle Gemeinschaften, und Pflanzen profitieren von intimen Interaktionen mit diesen Mikroben. Einige Mikroben vermitteln nicht nur die Toleranz gegenüber Klimastress, sondern können auch die Pflanzenernährung verbessern. Während es den Nutzen von Mikroben für die Aufrechterhaltung der Pflanzenproduktion anzeigt, erfüllen Feldanwendungen mit einzelnen nützlichen Mikroben oft nicht ihre nützlichen Aktivitäten, die unter Laborbedingungen beobachtet werden. In vorangegangenen gemeinsamen Studien haben wir festgestellt, dass das knötchenbildende Bakterium Sinorhizobium meliloti WSM1022 die Leguminose Medicago truncatula in verschiedenen Bodentypen sehr effizient mit Stickstoff (N) versorgt. Darüber hinaus haben wir herausgefunden, dass WSM1022 das Wurzelmikrobiom modulieren können, um ein Mini-Mikrobiom zu bilden, das wir zusammen mit WSM1022 als N-Biom definiert haben. Zusätzlich zur Unterstützung der N-Fixierung scheint das N-Biom weitere nützliche Effekte auf M. truncatula zu übertragen. In diesem Projekt wollen wir die Robustheit des N-Bioms und der Symbiose von M. truncatula unter verschiedenen N-Regimen und Trockenheit als vorherrschenden Klimastress im Gewächshaus mit Ackerboden evaluieren. Wir werden die Effizienz der Knötchenbildung und N-Fixierung, des Pflanzenwachstums und der Pflanzenentwicklung sowie die Expression von Symbiose- und Trockenstress-Markergenen quantifizieren, um die funktionelle Robustheit der N-Biom-M. truncatula-Symbiose zu bewerten. Darüber hinaus werden wir genomweite Assoziationsstudien durchführen, um genetische Merkmale von M. truncatula zu identifizieren, die die Etablierung des N-Bioms unter Trockenstress unterstützen. Alle Experimente werden von Wurzelmikrobiomanalysen begleitet, um die Integrität des N-Bioms oder eventuell der Erweiterung seiner Funktion durch die Rekrutierung zusätzlicher nützlicher Mikroben unter diesen sich verändernden Umgebungen zu bestimmen. Unser Projekt hat zum Ziel, das N-Biom als biologische Applikationseinheit für zukünftige Feldanwendungen zu entwickeln.

Untersuchung der Auswirkungen unterirdischer hydrologischer Prozesse und interindividueller Interaktionen auf den Wasserstress von Bäumen durch gekoppelte ökohydrologische-pflanzenhydraulische Modellierung

Wie das jüngste dürrebedingte Waldsterben und der Waldwachstumsrückgang in Europa und auf der ganzen Welt zeigen, hat der Klimawandel verheerende Auswirkungen auf die Waldökosysteme. Daher werden dringend neue Strategien zur Stabilisierung bestehender Wälder benötigt. Eine zentrale Herausforderung für die Waldbewirtschaftung besteht darin, dass die meisten Vorhersagen zur Abschätzung des Trockenstresses in Wäldern auf vereinfachten Ansätzen auf der Bestandsebene beruhen, wodurch verschiedene potenziell wichtige unterirdische Prozesse vernachlässigt werden. In diesem Projekt werden die Auswirkungen zweier solcher unterirdischer Prozesse—(i) die Dynamik des tiefen Wassers und (ii) die Artenmischung—auf die Widerstandsfähigkeit von Waldökosystemen gegenüber Wasserstress mit Hilfe eines gekoppelten ökohydrologisch-pflanzenhydraulischen Modells untersucht, das durch Felddaten zu stabilen Wasserisotopen, Wasserstress der Bäume und Saftfluss, die in diesem Projekt gesammelt wurden, sowie durch Synergien mit laufenden Projekten aus Deutschland und Frankreich ergänzt wird. Die Innovation dieses gekoppelten Modells besteht darin, dass der Schwerpunkt auf trockenheitsbedingten Prozessen in den Pflanzen und im Boden liegt. Das Projekt besteht aus vier Arbeitspaketen (APs), die von vier Arbeitsgruppen (zwei in Deutschland und zwei in Frankreich) geleitet werden. Das erste AP wird stabile Wasserisotopenmessungen nutzen, um unterirdische Prozesse im Feld zu untersuchen. Diese Messungen werden zur Information und Validierung der Berechnungsmodelle verwendet, die im zweiten und dritten Arbeitspaket entwickelt werden. Darüber hinaus werden Daten, die im Rahmen laufender Forschungsprojekte gesammelt wurden, für die Modellierung herangezogen. Das zweite AP wird ein ökohydrologisches und ein pflanzenhydraulisches Modell miteinander koppeln, um die topographischen Einflüsse auf das tiefe Wasser in einer räumlich verteilten Weise zu untersuchen. Das dritte AP wird ein pflanzenhydraulisches Multispeziesmodell entwickeln, um die Auswirkungen der Artenmischung auf die Widerstandsfähigkeit der Wälder gegen Trockenheit zu untersuchen. Schließlich wird das vierte AP eine detaillierte modellgestützte Fallstudie in den Vogesen, Frankreich, durchführen, wo sowohl topografische Einflüsse als auch interindividueller Wettbewerb eine wichtige Rolle für die Muster der Baumsterblichkeit spielen dürften. Das Projekt wird wertvolle Einblicke in zwei bisher wenig erforschte Komponenten der Widerstandsfähigkeit von Wäldern gegen Trockenheit liefern und mit dem gekoppelten ökohydrologisch-pflanzenhydraulischen Modell ein neuartiges Instrument für zukünftige Trockenheitsstudien bereitstellen. Außerdem erwarten wir, dass dieses Projekt die Zusammenarbeit zwischen den französischen und deutschen Gruppen stärkt, was zu künftigen gemeinsamen Forschungsanstrengungen führen soll.

Forschergruppe (FOR) 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE), Teilprojekt: Die Relevanz von pH-Werten im Meerwasser und der Ozeanversauerung für das Massensterben im Unteren Jura und an der Perm-Trias-Grenze

Extreme Änderungen im System der Erde zeigen sich durch das Zusammentreffen von Massensterben mit tiefgreifenden Störungen im globalen Kohlenstoffzyklus. Solche Ereignisse werden häufig durch drastische Veränderungen im Klima oder in der Chemie der Meere verursacht, d.h. durch eine schnelle Erderwärmung, die Ausbreitung anoxischer Bedingungen auf die Schelfmeere und die Versauerung der Ozeane. Diese Prozesse haben eine katastrophale Auswirkung auf die Ökosysteme aller trophischen Ebenen und bilden wichtige Rückkopplungsmechanismen für die Funktionsweise des globalen Kohlenstoffkreislaufes ab. Um die Rolle der Ozeanversauerung für das Massensterben zu dokumentieren, sollen hochauflösende Bor-Isotopenprofile von umfassend charakterisierten marinen Karbonatgesteinen erstellt werden, welche exemplarisch die Biogeochemie zum Zeitpunkt bedeutender Ereignisse dokumentieren. Gegenstand der angestrebten Untersuchungen sind das größte Massensterben im Phanerozoikum, das Permisch-Triassische Ereignis und das Massensterben 2. Ordnung zum Zeitpunkt des bedeutenden ozeanisch anoxischen Ereignisses im Mesozoikum, im Unteren Jura (Pliensbachium/Toarcium). Dieses ermöglicht uns den pH-Wert des Meerwassers zu Beginn und während eines Massensterbens zu rekonstruieren, dessen Ursache vermutlich auch Ozeanversauerung war. Parallel dazu werden diese Proben von unseren Kollegen hinsichtlich ergänzender Proxydaten und biologischer Auswirkungen untersucht, um biogeochemische Schlüsselinformationen zu generieren, die es uns ermöglichen Hypothesen zu testen, die Massensterben mit drastischen Änderungen im pH-Wert des Meerwassers und einer Versauerung der Ozeane verbinden.

Cyanobakterielle Lebensgemeinschaften im Litoral und Pelagial des Bodensees

Das Projekt soll unsere Kenntnis zur Biologie der Suesswassercyanobakterien des Bodensees erweitern. Cyanobakterien (=Blaualgen) erbringen als Bestandteil des autotrophen Picoplanktons einen wesentlichen Beitrag zur Primaerproduktion (Biomasse) und sind Teil des 'microbial loop' bzw. des Nahrungsnetzes. Erfasst werden sollen Bedingungen der Vermehrung und Ausbreitung einzelner Arten und Populationen im Litoral und Pelagial. Dabei sollen folgende Themen bearbeitet werden: 1. Trophische Abhaengigkeiten von Cyanobakterien und Purpurbakterien. Induktionsbedingungen fuer organische Ausscheidungsprodukte (Stress durch Starklicht und/oder Mineralsalzmangel). Exsudate von cyanobakteriellen Vertretern des Picoplanktons sollen charakterisiert und in ihrer Wirkung auf die N2-Bindung bzw. Nitrogenaseaktivitaet von Picoplanktonvertretern untersucht werden. 2. Isolation cyanobakterieller (einzelliger) Formen aus dem Bodensee und vergleichend Charakterisierung mit genetischen Sonden. Studien zur Populationsdynamik, Sukzession von Picoplanktonpopulationen im Litoral und Pelagial.

Alpine plant ecology

Our long term activities aim at a functional understanding of alpine plant life. Overall our research shifted gradually from studying resource acquisition (e.g. photosynthesis) toward resource investment and questions of developement. As with treeline, sink activity seems to be the major determinant of growth. A common misconception associated with alpine plant life finds its expression in the use of the terms 'stress' and 'limitation'. See the critique in: Körner C (1998) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds.) Physiological Plant Ecology. Blackwell Science , 297-311. Ongoing experimental work: The influence of photoperiod on growth and development in high elevation taxa (Ph.D. by Franziska Keller in cooperation with the Dept. of Geography, University of Fribourg). We test, whether and which species are responsive to earlier snow melt. It appears there exists a suite of different sensitivities, suggesting biodiversity shifts. We also tested the influence of nutrient addition on high elevation pioneer plants and run a longer term project on the interactive effect on sheep tramplng, nitrogen deposition and warming as part of the Swiss National Project NFP 48. A Europe-wide assessment of ground temperatures in alpine grassland is part of ALPNET (see associated organisations). The assessment provides a basis for comparing biodiversity in alpine biota from 69 to 37 degree of northern latitude. (Nagy et al. (2003) Ecological Studies, Vol. 167. 577 p. Springer, Berlin). A synthesis of research in functional ecology of alpine plants over the past 100 years was published in 1999.

Nutzung von Genomvariation zur Optimierung der stomatären Eigenschaften und zur Schaffung von klimaresistentem und nahrhaftem Reis

Steigende Temperaturen und Wassermangel verringern die Ernteerträge und die Qualität der Ernte in vielen landwirtschaftlichen Regionen. Dieses Problem wird sich durch den Klimawandel voraussichtlich noch verstärken. Wir werden uns in diesem Projekt auf Reis, eine er die wichtigste menschliche Nahrungspflanzen, konzentrieren. Der Anbau von Reis ist wasserintensiv, und vom Klimawandel besonders betroffen. Wir wollen mehrere natürliche genetische Variationen identifizieren und testen, die bereits einige Reis-Landrassen in die Lage versetzen, unter warmen und trockenen Klimabedingungen ausreichend Saatgut zu produzieren. Das Projekt hat die Verbesserung der Klimaresistenz von Nutzpflanzen zum Ziel. Ein Fokus liegt dabei auf der Rolle der Spaltöffnungen. Diese regulierbaren Poren steuern den Wasserverlust aus der Pflanze und sind daher entscheidend für die Verdunstungskälte und die Reaktion auf Trockenstress. Wir haben bereits die Genome von fast eintausend Reissorten untersucht, um eine Liste von 30 Genen mit natürlich vorkommenden Variationen zu identifizieren, die mit Wachstum in schwierigen Umgebungen verbunden sind. Sechs dieser Gene wurden priorisiert, und drei von ihnen sind direkt an der Regulierung der Spaltöffnungen beteiligt. Um herauszufinden, welche dieser Gene am ehesten in der Lage sind, Klimaresilienz zu verleihen, werden wir 200 traditionelle Reissorten, die entweder funktionale oder nicht-funktionale Kopien unserer Zielgene enthalten, untersuchen. Wir werden diese Reissorten sowohl in sorgfältig kontrollierten Umgebungen als auch in tropischen Feldversuchen anbauen und ihre Stressresistenz und ihren Nährstoffgehalt messen. Die Daten aus diesen Experimenten werden nicht nur die genetischen Sequenzen aufzeigen, die von Natur aus mit Hitze- und Dürretoleranz verbunden sind, sondern es auch ermöglichen, mit Hilfe von maschinelles Lernen die Eigenschaften, die die beste Vorhersagen für die Leistung der Pflanzen auf dem Feld erbringen, zu ermitteln. Wir werden die Funktion unserer Zielgene durch genetische Manipulation ihrer Expression verifizieren und durch in silico transkriptomische, physiologische und biochemische Analysen neue genomische Ressourcen für die Reisforschungsgemeinschaft bereitstellen. Schließlich werden wir mit Hilfe von Gene Editing versuchen die gefundene Stressresistenz in stressanfälligen modernen Elitereissorte wiederherzustellen. Um dies zu erreichen, brauchen wir die verschiedenen Fähigkeiten unseres multidisziplinären Teams. Darüber hinaus haben wir ein "Bürgerwissenschaftliches" Programm entwickelt, um die Rolle aller 30 klimaassoziierten Reisgenen neben den vorrangigen Zielgenen zu untersuchen. Zu diesem Zweck werden wir mit Schülern in lokalen Schulen in den USA und Großbritannien zusammenarbeiten. Hierbei werden wir zusätzliche Gene untersuchen und den Schülern und Lehrern die Möglichkeit geben, einen Beitrag zu den internationalen Forschungsbemühungen die den Klimawandel bekämpfen zu leisten.

Standardisiertes Monitoring von Wachstumsreaktionen wichtiger Waldbaumarten auf klimatische Extremereignisse, Teilvorhaben 3: Upscaling und Prognosen

Im Teilvorhaben 3 wird im Modul 5 (Flächendeckendes satellitengestütztes Monitoring der Wachstumsreaktion) ein satellitenbasiertes räumliches Monitoring der Wachstumsreaktion der Bäume für die Testgebiete entwickelt. Als Wachstumsreaktion wird die Veränderung des Saftflusses sowie des Dickenwachstums als Reaktion auf extreme Hitze- und Trockenperioden definiert. Beide Variablen werden mittels DHC-Stationen in situ gemessen und durch die Kombination mit Satellitendaten in die Fläche überführt. Als Prädiktoren werden neuartige Daten der spektral hochaufgelösten ECOSTRESS (IR hyperspektral), OCO-3 und DESIS (Hyperspektralsensor) herangezogen, die alle auf der ISS installiert und damit optimal für eine solche Datenkombination geeignet sind. Die Daten der punktuellen DHC-Stationen werden verwendet, um maschinelle Lernmodelle auf der Basis der spektral hochaufgelösten neuen Fernerkundungsdaten unter normalen und extremen Klimabedingungen zu trainieren. Die Modelle können auf das Prädiktorgitter angewendet werden, sodass die Zielvariablen räumlich modelliert werden können. Aufgrund der schlechten zeitlichen Auflösung werden diese Daten wiederum als Prädiktoren verwendet, um die Zielvariablen auf konventionelle, zeitlich höher aufgelöste (Sentinel, MODIS) und Kronen auflösende Systeme (Planet) zu transferieren. Damit ist ein räumliches Monitoring unter verschiedenen Klimabedingungen möglich. ECOSTRESS liefert gegitterte Prädiktorvariablen zur Verdunstung, zum Evaporative Stress Index sowie zur Water Use Efficiency in 30 bis 70 m Auflösung, die mit DHC-Messungen des Saftflusses kombiniert werden. OCO-3 liefert Informationen zur fotosynthetischen Aktivität (SIF: solar-induced chlorophyll fluorescence) in etwa 2 km Auflösung, die mit den DHC-Messungen zum Dickenwachstum kombiniert werden. DESIS liefert hyperspektrale Daten in 30 m Auflösung und wird v.a. für die Erhöhung der räumlichen Auflösung der OCO-3 Daten verwendet.

Die Rolle von NO in der Signaltransduktion bei pflanzlichen Abwehrreaktionen

Pflanzen verfügen über vielfältige Mechanismen zum Schutz vor Pathogenbefall oder Umweltstress. Dabei weisen pflanzliche Abwehrsysteme Ähnlichkeiten zum angeborenen Immunsytem von Säugern auf, bei dem Stickoxid (NO) eine Schlüsselrolle spielt. Auch in Pflanzen finden sich wichtige Komponenten der durch NO induzierten Signalübertragung. NO aktiviert Abwehrgene und ist beteiligt an programmiertem Zelltod und an der Abwehr von Pathogenen. Das vorgeschlagene Projekt hat zum Ziel, die Signalübertragung durch NO in Tabak und Arabidopsis zu erforschen und die Rolle von NO bei der Abwehr von Pathogenen zu klären. (1) Ein Schwerpunkt soll in der Aufklärung der Signalübertragung durch NO und der Aktivierung von Abwehrgenen liegen. Es soll geklärt werden, ob NO als mobiles Signal dient, und ob andere Signalmoleküle (z.B. Salicylsäure) in die NO-Signalübertragung integriert sind. (2) Um die Bedeutung von NO für die Regulation von Abwehrmechanismen zu klären, sollen Expressionsprofil und Expressionsdynamik von NO-induzierten Genen durch DNA-ChipTechnologie analysiert werden. Diese neuartige Technik wird auch Aufschluss über eine etwaige Vernetzung der NO-Signalübertragung mit pflanzlichen Hormonsystemen liefern. Die Erforschung der Signalübertragung durch NO in Pflanzen kann unser Verständnis von Resistenzmechanismen vertiefen und zur Entwicklung pathogen-resistenter Pflanzen beitragen.

Genetische und molekulare Grundlagen der systemischen Modulation der Architektur des Wurzelsystems von Mais (Zea mays L.) und des Mikrobioms der Rhizosphäre durch die Seminalwurzeln zur besseren Anpassung an Trockenheit

Die Architektur des Wurzelsystems von Mais hat sich während der Domestizierung und Verbesserung durch eine Kombination aus landwirtschaftlicher Selektion und Umweltanpassungen rund um den Globus erheblich verändert. Das Mikrobiom, das die Rhizosphäre um die Pflanzenwurzeln herum besiedelt, spielt eine wichtige Rolle bei der Förderung der Stresstoleranz von Pflanzen. In der ersten Förderperiode dieses Projekts haben wir nachgewiesen, dass die Anzahl der Seminalwurzeln während der Domestizierung von Mais zugenommen hat, gefolgt von einem Rückgang bei lokal angepassten Sorten in Regionen mit begrenzter Wasserverfügbarkeit. Umwelt-, genetische und genomische Analysen ergaben frühere Signaturen der Domestizierung und Anpassung von Maiswurzeln und zeigten das genetische Potenzial zur Verbesserung der Trockentoleranz künftiger Nutzpflanzen auf. In der zweiten Förderperiode verfolgen wir zwei übergeordnete Ziele. Erstens soll ein tieferes Verständnis der genetischen und molekularen Grundlagen der systemischen Modulation der Wurzelmorphologie und -anatomie durch Seminalwurzeln gewonnen werden, um eine bessere Anpassung an die begrenzte Wasserverfügbarkeit zu erreichen. Zu diesem Zweck werden wir die komplexe Pflanzenreaktion auf Trockenstress und die mit diesen Merkmalen assoziierten Gene identifizieren, die an der Architektur des Wurzelsystems als Reaktion auf Trockenheit beteiligt sind. Zweitens wollen wir die genetische Rolle des Wirts bei der Zusammensetzung der mikrobiellen Gemeinschaft des von den Wurzelmerkmalen abhängigen nützlichen Mikrobioms der Rhizosphäre verstehen, um die Widerstandsfähigkeit von Mais gegen Trockenheit zu verbessern. In diesem Zusammenhang werden wir systematisch untersuchen, wie sich die genetische Variation des Wirts und die Genregulation auf die Zusammensetzung des Mikrobioms der Rhizosphäre und auf die Produktivität von Mais und die Widerstandsfähigkeit gegen Trockenheit auswirkt. Schließlich werden wir repräsentative Schlüsselgene und Schlüsselmikroben durch reverse Genetik und synthetische mikrobielle Gemeinschaften funktionell validieren. Diese Ergebnisse werden den Weg für eine verbesserte Pflanzenzüchtung und die Nutzung mikrobieller Ressourcen ebnen, um die künftige Nahrungsmittelproduktion und eine effiziente Ressourcennutzung in der Landwirtschaft zu sichern.

Diagnostische Roggen-Ionomik

Das funktionelle Ionom einer Pflanze beschreibt ihre elementare Zusammensetzung hinsichtlich der essentiellen Pflanzennährstoffe. Funktionelle Ionome von Pflanzen werden durch Umweltfaktoren, einschließlich Nährstoffmangel und Wasserversorgung, beeinflusst und sind artenspezifisch. Dies ist auf die artenspezifische Aufnahme, Speicherung und Remobilisierung von Nährstoffen zurückzuführen. Die Charakterisierung funktioneller Ionome bildet die Grundlage für diagnostische Anwendungen in der Jugendentwicklung der Pflanzen, sowohl im Pflanzenbau als auch in der Pflanzenzüchtung. Obwohl kürzlich für einige Kulturarten funktionelle Ionome für spezifische Nährstoffmängel etabliert wurden, ist wenig über die Auswirkung von zeitgleichem Trockenstress bekannt. Diese Wissenslücke ist zunehmend relevant, da der Einsatz von Mineraldüngern in der Pflanzenproduktion zunehmend beschränkt wird und durch den Klimawandel häufiger Trockenperioden auftreten. Es wurden noch keine diagnostischen Ionome von Roggen (Secale cereale L.) charakterisiert, obwohl Roggen häufig auf Böden mit geringer Verfügbarkeit von Wasser und von Nährstoffen, wie Stickstoff (N), Phosphor (P) und Kalium (K), angebaut wird. Das Ziel des hier vorgeschlagenen Projekts ist es, diese Lücken zu schließen. In diesem Projekt werden für Roggen erstmals diagnostische Ionome für die Nährstoffmängel N, P und K unter gegensätzlicher Wasserversorgung definiert. Durch chemische Analysen einzelner Pflanzenorgane und die hochauflösende, räumliche Quantifizierung von Nährstoffen in verschiedenen Blattgeweben wird unser Verständnis über die zugrundeliegenden Prozesse, die zu charakteristischen Ionomen führen, grundlegend erweitert. Dafür werden zunächst Versuche unter kontrollierten Umweltbedingungen durchgeführt. Die Grundlagenkenntnisse werden anschließend unter Feldbedingungen validiert. Es wurden vier Dauerfeldversuche auf der Thyrower Versuchsstation der Humboldt-Universität zu Berlin identifiziert, in denen durch jahrzehntelange differenzierte Düngung spezifische Nährstoffmängel induziert wurden. Die vier Dauerfeldversuche können durch gemeinsame Prüfglieder versuchsübergreifend statistisch ausgewertet werden. Neben chemischen Pflanzenanalysen sind in den Feldversuchen detaillierte Bodenuntersuchungen geplant. Dies ermöglichet die Validierung der neu etablierten diagnostischen Ionome mit und ohne begleitenden Trockenstress. Zusammenfassend wird dieses Projekt unser Grundlagenverständnis hinsichtlich der Aufnahme, Speicherung und Remobilisierung von Nährstoffen unter verschiedenen Umweltbedingungen anhand einer unterforschten aber zukunftsrelevanten Kulturart erweitern. Die neu gewonnenen, mechanistischen Erkenntnisse werden anschließend validiert und bilden somit eine solide Grundlage für Anwendungen im Pflanzenbau und in der Pflanzenzüchtung.

1 2 3 4 591 92 93