API src

Found 790 results.

Similar terms

s/tci/TC/gi

Bodenaushagerung nach Einstellung der Stickstoffduengung auf verschieden geduengtem Wirtschaftsgruenland zur Ueberfuehrung in Extensivgruenland

Auf vorher mit 0, 180, 300, 420 und 660 kg N/ha N zT aus Handelsduenger, zT aus Guelle; die Guelle zT als Vollguelle, zT als verduennte Guelle und zT mit Nachregnen-geduengten Flaechen wird nicht mehr mit N geduengt. Alle Varianten werden 4mal geschnitten. Ermittelt werden Trockenmasseertrag und N-Gehalt im Aufwuchs sowie NO3-Konzentration im Bodenwasser (90 cm Tiefe), Nmin im Boden bei 100 cm Tiefe und Gesamt-N und Gesamt-C bis 40 cm Tiefe.

Batterieaussonderung bei Elektronikprodukten, Teilvorhaben: Feldtest und Evaluation aus der Perspektive eines Wertstoffhofs

Flussmessstelle Nr. 2150 in Nidda, Frankfurt-Nied, Messstation

Dieser Datensatz enthält Informationen zur Flussmessstelle Nr. 2150 in Nidda, Frankfurt-Nied, Messstation. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.

Field based and laboratory data of sediment cores from the Lower Havel Inner Delta near Lake Gülpe, Brandenburg (Germany)

Sediment cores were recovered using a hand-held Cobra Pro (Atlas Copco) core drilling system with a 60 mm diameter open corer. One-meter segments were retrieved and assessed in the field for sedimentological features, including estimations of grain size, carbonate content, humus content, and redox features (AG Boden 2005, 2024). Colour descriptions were carried out using the Munsell Soil Color Chart. The exact positions of the drilling points were recorded using a differential GPS device (TOPCON HiPer II). The cores were photographed, documented and sampled at 5–10 cm intervals for subsequent laboratory analyses. Bulk samples from five selected cores (RK1, RK3, RK13, RK15, RK17) were freeze-dried, sieved (2 mm), and weighed. Total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents were measured using a CNS analyzer (Vario EL cube, Elementar). Inorganic carbon (TIC) was determined using calcimeter measurements (Scheibler method, Eijkelkamp). Organic carbon (TOC) was calculated as TOC = TC − TIC. For the grain size analyses, sediment samples were first sieved to <2 mm and subsamples of 10 g were treated with 50 ml of 35% hydrogen peroxide (H₂O₂) and gently heated to remove organic matter. Following this, 10 ml of 0.4 N sodium pyrophosphate solution (Na₄P₂O₇) was added to disperse the particles, and the suspension was subjected to ultrasonic treatment for 45 minutes. The sand fraction was analysed by dry sieving and classified into four size classes: coarse sand (2000–630 µm), medium sand (630–200 µm), fine sand (200–125 µm), and very fine sand (125–63 µm). Finer fractions were determined using X-ray granulometry (XRG) with a SediGraph III 5120 (Micromeritics). These included coarse silt (63–20 µm), medium silt (20–6.3 µm), fine silt (6.3–2.0 µm), coarse clay (2.0–0.6 µm), medium clay (0.6–0.2 µm), and fine clay (<0.2 µm).

Flussmessstelle Nr. 166 in Nidda, Nidda-Eichelsdorf

Dieser Datensatz enthält Informationen zur Flussmessstelle Nr. 166 in Nidda, Nidda-Eichelsdorf. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.

Geophysical, Sedimentological and Geochemical Data from the Lower Havel Inner Delta (Gülpe Island), Brandenburg (Germany)

To investigate subsurface features in the Lower Havel River floodplain, we conducted Electrical Resistivity Tomography (ERT) transects and Electromagnetic Induction (EMI) surveys at three different depths in 2023 and 2024. These near surface geophysical methods were complemented by 24 driving core drillings to relate the electrical properties with sedimentological characteristics. Additionally, five selected sediment cores were used for subsequent geochemical lab analyses (grain size, CNS, TOC, TIC). Electromagnetic induction (EMI) was measured with a CMD-Mini Explorer (GF Instruments s.r.o., Brno, Czech Republic) in June 2023 and June 2024. We used the vertical dipole (VDP) at coil spacings of 0.32 m (VDP1), 0.71 m (VDP2) and 1.18 m (VDP3), archieving effective penetration depths of 0.5 m (VDP1), 1.0 m (VDP2) and 1.8 m (VDP3). According to the manufacturer, 70% of the signal originate from above these depths. The EMI sensors measure the apparent electrical conductivity (ECa, in mS/m). Measurements were taken by carrying the instrument about 0.2 m above ground while being directly connected to D-GPS (Leica GPS1200) for positioning. The acquisition rate was five measurements per second. Data quality was checked by measuring a reference line before and after each measurement. The area investigated by EMI in June 2023 is located to the north and northeast of the Gülpe research station. It has a total area of 12.3 ha. The reference line was located in the southern part of the study area. No drift correction had to be applied due to good data quality. Reference lines and single outliers were removed. The area investigated by EMI in June 2024 is located southeast of the research station. The survey area there is 8.1 ha in size. The reference line for the measurements there was located in the north-westernmost area of the site. No drift correction had to be applied due to good data quality. Reference lines and single outliers were removed. The Electrical Resistivity Tomography (ERT) data were acquired by using a PC controlled DC resistivity meter system (RESECS, Geoserve, Kiel, Germany). In total, we measured four ERT transects. Two transects in June 2023, where transect 1 had a total length of 259 m with an electrode spacing of 0.5 m and transect 2 had a total length of 223 m with an electrode spacing of 1 m. The measurements in 2023 were carried out under extreme dry conditions. Two further transects were measured in June 2024 with an electrode spacing of 1m, transect 3 with a total length of 207 m and transect 4 with a total length of 239 m. We applied wenner alpha and dipol-dipol configuration. The coordinates and the height of the electrodes were measured with a D-GPS (2023: TOPCON HiPer II / 2024: Leica GPS1200). Sediment cores were recovered using a hand-held Cobra Pro (Atlas Copco) core drilling system with a 60 mm diameter open corer. One-meter segments were retrieved and assessed in the field for sedimentological features, including estimations of grain size, carbonate content, humus content, and redox features (AG Boden 2005, 2024). Colour descriptions were carried out using the Munsell Soil Color Chart. The exact positions of the drilling points were recorded using a differential GPS device (TOPCON HiPer II). The cores were photographed, documented and sampled at 5–10 cm intervals for subsequent laboratory analyses. Bulk samples from five selected cores (RK1, RK3, RK13, RK15, RK17) were freeze-dried, sieved (2 mm), and weighed. Total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents were measured using a CNS analyzer (Vario EL cube, Elementar). Inorganic carbon (TIC) was determined using calcimeter measurements (Scheibler method, Eijkelkamp). Organic carbon (TOC) was calculated as TOC = TC − TIC. For the grain size analyses, sediment samples were first sieved to <2 mm and subsamples of 10 g were treated with 50 ml of 35% hydrogen peroxide (H₂O₂) and gently heated to remove organic matter. Following this, 10 ml of 0.4 N sodium pyrophosphate solution (Na₄P₂O₇) was added to disperse the particles, and the suspension was subjected to ultrasonic treatment for 45 minutes. The sand fraction was analysed by dry sieving and classified into four size classes: coarse sand (2000–630 µm), medium sand (630–200 µm), fine sand (200–125 µm), and very fine sand (125–63 µm). Finer fractions were determined using X-ray granulometry (XRG) with a SediGraph III 5120 (Micromeritics). These included coarse silt (63–20 µm), medium silt (20–6.3 µm), fine silt (6.3–2.0 µm), coarse clay (2.0–0.6 µm), medium clay (0.6–0.2 µm), and fine clay (<0.2 µm).

Immissions- und Strahlenschutz (GB 2)

• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.

C-Umsatz und C-Festlegung im Boden unter Miscanthus x gigantheus mit Hilfe natürlicher 13C-Abundanz

Angesichts der durch steigende Kohlendioxid (CO2)- Konzentrationen bedingten Klimaerwärmung wird nach Möglichkeiten gesucht, CO2 unter anderem in terrestrischen Senken für längere Zeiträume festzulegen. Am Beispiel von Miscanthus x giganteus (Greef et Deu.) wurde untersucht, ob durch den Anbau von nachwachsenden Rohstoffen eine Kohlenstoff (C)- Festlegung in Böden unterschiedlicher Textur möglich ist. Zu diesem Zweck wird die Methode der natürlichen 13C-Abundanz angewandt. Mit dieser modernen Methode können C-Umsatzzeiten des Gesamtkohlenstoffs im Boden sowie seiner verschieden Pools abgeschätzt werden, aber auch die C-Dynamik auf molekularer Basis durch komponentenspezifische O13C Lipidanalysen untersucht werden. Die Untersuchungen zeigten, dass die unter Miscanthus ermittelten C-Verweilzeiten nur geringfügig länger sind als diejenigen unter Mais. Die jährliche Festlegung von miscanthusbürtigem C in der organischen Bodensubstanz (OBS) bestätigt nur für lehmigen Boden eine höhere C-Sequestrierung von Miscanthus. Es wurde eine vergleichbare C-Akkumulation durch den Miscanthusanbau wie in Grünlandböden festgestellt. Ebenso zeigen Inkubationsexperimente im Miscanthusboden eine ähnliche kumulative CO2-Freisetzung wie in Böden unter Grünland mit einer Tendenz zu geringfügig niedrigeren Freisetzungsraten im Miscanthusboden, Die Anteile von miscanthusbürtigem C am freigesetzten CO2 sind ähnlich wie in Versuchen mit Mais. Es lässt sich eine schnellere Umsetzung des miscanthusbürtigen C in der mikrobiellen Biomasse als leicht umsetzbarer C-Fraktion bestätigen. Die Zugabe leicht verfügbarer organischer Substanzen bewirkte eine verstärkte Mineralisierung der OBS, wobei dieser zusätzlich freigesetzte C entgegen den Erwartungen aus der alten, C3 bürtigen OBS Fraktion stammte. In 13C- Markierungsexperimenten konnte in Miscanthus, Mais, Weizen und Roggen die Verlagerung des kürzlich assimilierten CO2 in Pflanzenteilen verfolgt werden. Eine Verlagerung in den Boden fand hierbei kaum statt. Die O13C-Werte aus den komponentenspezifischen O13C- Lipidanalysen sind vielversprechend für die Diagnose von molekularen Markern und die daraus erfolgende Bestimmung der Umsatzraten. An den CO2- Konzentrationen der Bodenluft und der Herkunft des CO2 konnte der besondere Vegetationszyklus (später Wachstumsbeginn, verzögertes Wurzelwachstum) von Miscanthus wiedergespiegelt werden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Sedimente des Melvillesees: Ein Zeitfenster in die präholozäne Glazialgeschichte des Laurentidischen Eisschildes (Akronym: MELSED)

Der Melvillesee ist ein Fjordsee, der sich in der letzten Eiszeit am Rande des hochdynamischen Laurentidischen Eisschildes (LIS) befand. Die obersten 10 m der insgesamt ca. 300-400 m Seesedimente haben die postglaziale Geschichte der letzten 10000 Jahre aufgezeichnet. In diesem dicken Sedimentpaket dürfte der See die Klimageschichte bis weit zurück vor das letzte Glazial gespeichert haben und würde sich daher als exzellentes Klimaarchiv anbieten. Um diesen Sachverhalt zu klären, wurde im Sommer 2019 eine Expedition mit dem FS Maria S. Merian (MSM84) unternommen. Während dieser Expedition wurden Sedimentkerne gezogen sowie ein dichtes Netz von hydroakustischen Messungen durchgeführt. Anhang der Sedimentkerne und der Sedimentecholot-Daten kann man fünf verschiedene Schichten im Untergrund des Sees erkennen: (I) post-glaziale Sedimente; (II) Sedimente aus der Zeit des Eisrückzuges; (III) Sedimente, die mit großer Wahrscheinlichkeit in einem subglazialen See unterhalb des aufschwimmenden LIS abgelagert wurden. Darunter finden sich (IV) wiederum schön geschichtete Sedimente, die aus einem früheren eisfreien Zeitraum stammen dürften, vermutlich MIS5, MIS4 oder die erste Hälfte des MIS3. Als unterste Schichte ist das Grundgestein (V) zu erkennen. Unsere Sedimentkerne enthalten Sedimente aus I und II sowie aus dem obersten Bereich von III. Im Rahmen dieses Projektes schlagen wir vor, die post-glazialen Sedimente sowie diejenige vom Rückzug des LIS genauer zu untersuchen, um daran Paläoklimaschwankungen sowie die Rückzugsgeschichte des LIS zu rekonstruieren. In einem zweiten Schritt möchten wir auch die Sedimente analysieren, die vom subglazialen See zu stammen, um diesen besser zu charakterisieren und um zu testen, ob auch diese Sedimente Klimaschwankungen aufgezeichnet haben. Um diese Fragen zu beantworten, werden wir die Sedimentkerne zuerst mit zerstörungsfreien Methoden wie CT-Scanning, Multisensor-Core-Logging und XRF-Scanning untersuchen. Danach werden ausgewählte Kernabschnitte beprobt. Mit Hilfe von Radiokarbondatierungen und paläomagnetischen Messungen werden wir ein Altersmodell erstellen können. Mit einer Kombination der zerstörungsfreien Messungen mit Einzelprobenmessungen (TIC, TOC, Korngröße, XRD, WD-XRF) werden wir die in den Kernen enthaltene paläoklimatologische Information entschlüsseln. Hierbei werden wir einen Schwerpunkt auf die Entwicklung von Proxies legen, die geeignet sind, die vergangenen Vorstöße und Rückzüge des LIS zu rekonstruieren. Falls wir zeigen können, dass die Sedimente des Melvillesees tatsächlich ein Archiv für Klimageschichte auch jenseits des Holozäns sind, dann empfiehlt sich der See als ein Hauptziel einer zukünftigen amphibischen Tiefbohrung von IODP und ICDP. Diese würde mit dem Ziel abgeteuft, die Dynamik des LIS zu rekonstruieren.

Optoelektronische Methode der Blickregistrierung zur objektiven Bewertung der Demontagegerechtheit von Bauteilen und Produkten

Zielsetzung und Anlass des Vorhabens: Das Aufkommen an Elektro(nik)-Altgeräten wird in der EU für die Jahre 1998/99 auf 8 Mio. Mg geschätzt, wobei 90 Prozent deponiert, verbrannt bzw. verwertet werden, ohne dass eine Schadstoffentfrachtung stattfindet. Bei der Verwertung dieser Geräte ergänzen sich heute die Bereiche der manuellen Demontage und die der verfahrenstechnischen Aufbereitung. Voraussetzung für ein ökologisch hochwertiges Recycling ist vielfach die Demontage, die jedoch erhebliche Kosten verursachen kann. Zum einen hat das Vorhaben die Zielsetzung, ein Screening über die bei den Verwertern anfallenden Alt-Produkte zu erzeugen, anhand dem eine Bewertung der Produkte aus ökologischer und ökonomischer Sicht durchgeführt werden kann und eine Entscheidung getroffen werden kann, ob eine Demontage nötig bzw. sinnvoll ist. Zum anderen werden Demontageuntersuchungen sowohl im Labor als auch verstärkt bei Verwertern mit Hilfe einer Blickregistrierungskamera durchgeführt. Aus den Analysen dieser Untersuchungen werden Konstruktionskriterien für eine schnellere Demontage abgeleitet. Darstellung der Arbeitsschritte und der angewandten Methoden: Im ersten Teil des Projektes wird mit Hilfe von Umweltverträglichkeitsuntersuchungen die Einteilung der beim Verwerter anfallenden Produkte vorgenommen. Ausgehend von einer Musterzerlegung werden die Einzelfraktionen der Geräte bestimmt, ihre Umweltrelevanz untersucht und die bestehenden Verwertungsalternativen zusammengestellt. Diese Ergebnisse werden unter Betrachtung aller wirtschaftlichen und ökologischen Teilaspekte möglicher Gesamtentsorgungsalternativen wie z.B. Shredder, Verbrennung bzw. Deponierung gegenübergestellt. Im zweiten Teil werden Demontageuntersuchungen mit Hilfe der Blickregistrierung durchgeführt, deren Analyse aufzeigt, welche Konstruktionskriterien eine einfache Erkennbarkeit der Baustruktur und der Verbindungselemente zulässt. Fazit: In diesem Projekt konnte durch eine Öko-Bilanzierung gezeigt werden, dass eine vertiefte Demontage ökologische Vorteile gegenüber der verfahrenstechnischen Aufbereitung beim Recycling von Elektronik-Geräten aufweist. Weiterhin wurde erstmals die Blickregistrierung bei der Demontage von Elektro(nik)-Geräten eingesetzt. Der Einsatz dieser Methode in diesem Bereich hat sich als effektiv erwiesen. Der Demontageanalyseprozess wurde soweit optimiert, dass er jetzt standardmäßig als Dienstleistung angeboten werden kann. Bei der Umsetzung der mit der Blickregistrierung ermittelten Konstruktionskriterien lassen sich bei gleichen Demontagekosten deutliche ökologische Vorteile erzielen. Für die Weiterführung des Projektes sind im nächsten Schritt entwicklungsbegleitende Untersuchungen notwendig, um die Ergebnisse zu bestätigen und umzusetzen.

1 2 3 4 577 78 79