API src

Found 4132 results.

Similar terms

s/thw/THG/gi

Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen

<p>Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen</p><p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a>eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>⁠) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8&nbsp;% der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5&nbsp;% zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOxund Stickstoff, N2). Dieser Bereich trägt zu 16,2&nbsp;% an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ unberücksichtigt.</p><p></p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von<a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a>(Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirt­schaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die<strong>direkten Emissionen</strong>stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für<strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a>legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62&nbsp;Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen finden Sie auf den Themenseiten<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>,<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a>und<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>

Treibhausgas-Emissionen

<p>Treibhausgas-Emissionen</p><p>Das Umweltbundesamt ist in Sachen Treibhausgasemissionen die offizielle Anlaufstelle und wichtiger Ansprechpartner in Deutschland.</p><p>Die Lufthülle unseres Planeten besteht aus verschiedenen Gasen, die über vielfältige Funktionen und Prozesse zu einem komplexen chemischen System verknüpft sind. Anthropogene Emissionen bedrohen das atmosphärische Gleichgewicht vor allem in zweierlei Hinsicht: Treibhausgasemissionen führen zu einem Anstieg der globalen Temperatur. Die Klassischen Luftschadstoffe sind für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ von Ökosystemen, aber auch für eine Gefährdung der menschlichen Gesundheit verantwortlich.</p><p>Auf den folgenden Seiten geben wir eine kurze Einführung in die im Kyoto-Protokoll geregelten Treibhausgase und erläutern, wie sie entstehen und sich auf unser ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ auswirken. Wir stellen Ihnen die wichtigsten Emissionsquellen vor und liefern aktuelle Daten zur Entwicklung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen. Außerdem zeigen wir, wie Deutschland in Sachen Emissionen im Vergleich zu anderen EU-Staaten dasteht und wie die für Deutschland verpflichtende internationale Emissionsberichterstattung funktioniert.</p>

CFD4H2

Statistischer Bericht - Umweltökonomische Gesamtrechnungen (UGR) - Luftemissionsrechnung - 2006 bis 2023

Mensch und Umwelt stehen zueinander in einer dynamischen Beziehung. Zum Beispiel nutzt der Mensch einerseits Ressourcen der Umwelt, wie zum Beispiel fossile Energieträger und andere Rohstoffe, für die Herstellung von Konsum- und Investitionsgütern. Zugleich werden durch die Verarbeitung und Nutzung von Materialien auch Rest- und Schadstoffe wie etwa Treibhausgase, Schwefeldioxid oder Feinstaub an die Umwelt abgegeben. Das Leistungspotential der Umwelt als Senke für Schadstoffe ist jedoch begrenzt und die Abgabe von Emissionen in die Luft hat Auswirkungen auf das globale Klima und auf die Gesundheit der Menschen. Die Luftemissionsrechnung gibt Auskunft darüber, in welchem Umfang inländische wirtschaftliche Akteure Emissionen von Treibhausgasen und Schadstoffen in die Luft verursachen. Sie stellt somit die anthropogenen Luftemissionen dar. Zu den für den Klimawandel verantwortlich gemachten sogenannten Treibhausgasen zählen gemäß Kyoto-Protokoll die Stoffe Kohlendioxid (CO2), Distickstoffmonoxid (Lachgas, N2O) und Methan (CH4) sowie die fluorierten Treibhausgase (F-Gase). Zu den fluorierten Treibhausgasen gehören die vollfluorierten Kohlenwasserstoffe (FKW), die teilfluorierten Kohlenwasserstoffe (HFKW), Schwefelhexafluorid (SF6) und Stickstofftrifluorid (NF3). Der Statistische Bericht enthält Inhalte der bisherigen Publikation " Anthropogene Luftemissionen ", welche letztmalig mit den Daten für 2000 bis 2020 veröffentlicht wurde. Aufgrund methodischer Änderungen beginnen die Zeitreihen ab dem Jahr 2006. Die Inhalte dazu finden sie künftig über das Datenbankangebot GENESIS-Online im Themenbereich 85111 . Ältere Ausgaben dieser Publikation finden Sie in der Statistischen Bibliothek.

Soil-gas transport-processes as key factors for methane oxidation in soils

Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.

Permafrostforschung auf dem Weg zur integrierten Beobachtung und Modellierung des Methanhaushalts von Ökosystemen; Leitantrag, Vorhaben: Die Rolle von Mikrobiologie und Wasserkörpern für den Methanhaushalt von Permafrostgebieten

Radon in Sachsen-Anhalt Was ist Radon? Radon in der Umwelt Radon in Gebäuden Auswirkungen des Radons auf den Menschen Festlegung von Gebieten nach § 121 Strahlenschutzgesetz Radonfachperson - Eintrag in die Liste ausgebildeter Radonfachleute FAQ - Häufig gestellte Fragen im Zusammenhang mit Radonvorsorgegebieten Messpflicht für Arbeitsplatzverantwortliche in Radonvorsorgegebieten Maßnahmen zum Schutz vor Radon Radon-Schutzmaßnahmen bei Neubauten Erfahrungen aus Sachsen-Anhalt

Radon-222 ist ein natürliches radioaktives Edelgas, welches durch den Zerfall von Uran-238 entsteht. Uran befindet sich in natürlicher Form in Böden und Gesteinen, aus denen sich Radon-222 lösen kann. Radon ist farblos, man kann es nicht riechen und schmecken. Es ist nicht entflammbar und ist nicht giftig, jedoch radioaktiv. Als Gas ist es ausgesprochen mobil, kann sich vom Entstehungsort aus in den Boden- und Gesteinsschichten verteilen und in die freie Atmosphäre austreten. Über undichte Fundamente gelangt es in Gebäude und kann sich dort anreichern. Ist eine Person länger oder häufig einer erhöhten Radon-222-Konzentration ausgesetzt, so steigert dies das Lungenkrebsrisiko. Bürger, die in Regionen mit erhöhten Radonkonzentrationen leben, können sich durch geeignete Verhaltens- und Vorsorgemaßnahmen vor gesundheitlichen Risiken schützen. In der Erdkruste sind radioaktive Stoffe, wie Uran, Thorium und das Mutternuklid des Radons, das Radium, enthalten. Geologische Prozesse, die in der Folge entstandenen geologischen Lagerungsbedingungen und die Eigenschaften der Radionuklide bestimmen die Konzentration der natürlichen radioaktiven Stoffe in den Gesteinen und im Boden. Im Norden und Osten von Sachsen-Anhalt wurden nur geringe Radonkonzentrationen in der Bodenluft gemessen, während die Messwerte vor allem im Südwesten erhöht sind. Dies liegt an den geologischen Gegebenheiten im Bereich des Harzes. Das Bundesamt für Strahlenschutz stellt in seinem Geoportal eine interaktive Karte von Deutschland zur Verfügung. Dort ist es möglich, die Radon-222-Konzentrationen in der Bodenluft einzublenden: https://www.imis.bfs.de/geoportal/ Tritt Radon aus dem Boden aus, wird es entweder im Freien in die Luft oder aber in Gebäuden freigesetzt. Während die Radonkonzentration im Freien durch Vermischen mit der Umgebungsluft nur wenige zehn Becquerel (Bq) pro Kubikmeter (m³) beträgt, ist sie in Wohnräumen in Deutschland im Durchschnitt drei- bis viermal höher, da das Radon unverdünnt aus dem Untergrund in das Gebäude eindringt. Es ist somit bestimmend für die durch das Radon verursachte Strahlenbelastung der Bewohner. Ausgehend von der Radonkonzentration in der Bodenluft liegt das Verhältnis von Radon in der Raumluft zu Radon in der Bodenluft bei circa 0,1 bis 0,5 Prozent, das heißt bei einer Aktivitätskonzentration in der Bodenluft von z. B. 100 kBq/m³ könnten Werte im Bereich von 100 bis 500 Bq/m³ in der Raumluft des Gebäudes auftreten. Das Radon gelangt durch undichte Stellen im Fundament oder in den Kellerräumen in das Haus und breitet sich dort über Treppenaufgänge, Kabelkanäle und Versorgungsschächte aus. Die Radonkonzentration in Gebäuden wird durch gebäudespezifische Einflussfaktoren bestimmt: das Radonangebot im Boden und seine Beschaffenheit, den Zustand des Gebäudes, einen möglichen Kamineffekt im Gebäude, das Lüftungsverhalten der Gebäudenutzer. Eine Prognose der Radon-222-Konzentration in der Raumluft zeigt diese Karte des Bundesamtes für Strahlenschutz: https://www.bfs.de/DE/themen/ion/umwelt/radon/karten/innenraeume.html Radon-222 wird beim Atmen aufgenommen und zum größten Teil wieder ausgeatmet. Die ebenfalls radioaktiven Zerfallsprodukte Polonium, Blei oder Wismut werden jedoch in den Atmungsorganen abgelagert. Untersuchungen bei größeren Bevölkerungsgruppen lassen darauf schließen, dass ein Zusammenhang zwischen der Radon-Exposition und dem Lungenkrebsrisiko besteht. Allerdings dürfen für eine Bewertung der Gefährdung andere Faktoren wie Rauchen, Feinstaub und weitere Schadstoffe nicht außer Acht gelassen werden. So zeigen Studien, dass das auf Radon basierende Lungenkrebsrisiko durch gleichzeitiges Rauchen erhöht wird - die meisten radonbedingten Lungenkrebsfälle treten bei Rauchern auf. Somit wird die Frage zur Festlegung der Höhe eines Referenzwerts der Radonkonzentration in Wohnräumen in Fachkreisen unterschiedlich bewertet. Der in Deutschland gesetzlich festgelegte Referenzwert liegt bei 300 Becquerel pro Kubikmeter, doch auch darunter ist eine weitere Verringerung sinnvoll. Das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU) ist durch das Strahlenschutzgesetz beauftragt, sogenannte Radonvorsorgegebiete in Sachsen-Anhalt festzulegen. Radonvorsorgegebiete sind Gebiete nach § 121 Absatz 1 des Strahlenschutzgesetzes. Für diese Gebiete wird erwartet, dass die über ein Jahr gemittelte Radon-222-Aktivitätskonzentration in der Luft von Aufenthaltsräumen oder Arbeitsplätzen den gesetzlichen Referenzwert überschreitet. Der Referenzwert liegt für Aufenthaltsräume und Räume mit Arbeitsplätzen bei 300 Bq/m³. Das damalige Umweltministerium legte zum 30. Dezember 2020 die folgenden Gemeinden als Gebiete nach § 121 Strahlenschutzgesetz (Radonvorsorgegebiete) fest: Im Landkreis Mansfeld-Südharz : Allstedt Arnstein Goldene Aue Hettstedt Lutherstadt Eisleben Mansfeld Mansfelder Grund – Helbra Sangerhausen Südharz Im Landkreis Harz : Falkenstein Harzgerode Ilsenburg Oberharz am Brocken Thale Wernigerode Die Festlegung der Radonvorsorgegebiete in Sachsen-Anhalt basiert auf: der wissenschaftlichen Auswertung geologischer Daten, der Prognosekarte des geogenen Radonpotenzials 2020 des Bundesamtes für Strahlenschutz, Messwerten der Radon-222-Aktivitätskonzentration in der Bodenluft, Messungen der Radon-222-Aktivitätskonzentration in der Luft von Innenräumen und auf der Betrachtung weiterer örtlicher Faktoren. Die zuständige Behörde für die Überwachung der Einhaltung der aus der Festlegung folgenden Pflichten ist das Landesamt für Verbraucherschutz des Landes Sachsen-Anhalt. Geogenes Radonpotenzia l Das Bundesamt für Strahlenschutz hat eine Karte von Deutschland erstellt, welche das sogenannte „geogene Radonpotenzial“ in einem 10 x 10 km²-Raster abbildet. Diese Karte stellt das Ergebnis von Modellrechnungen dar, welche unter anderem geologische Daten, Daten zur Bodenpermeabilität, Messdaten in der Boden- und Raumluft, sowie Gebäudeeigenschaften einbeziehen. Diese Prognose betrachtet alle bis zum 30. Juni 2020 eingegangenen, mittels aktiver Messtechnik gewonnenen Bodenluftmessdaten. Die Methodik dieser Prognose entspricht annähernd einer älteren Modellierung des Bundesamtes für Strahlenschutz, die in einem Bericht von 2019 erläutert wird. Die aktuelle Prognose des Radonpotenzials nutzt jedoch eine abweichende Interpolationsmethode und die dominierende Geologie von jedem Rasterfeld als Prädiktor. Für die Prognose wurde die Modellierung mit Innenraummessungen verknüpft. Bei Fach-, Berufsverbänden oder ähnlichen Einrichtungen zu Radonfachleuten Ausgebildete können sich in die Liste ausgebildeter Radonfachleute eintragen lassen. Der Antrag ist unter dem Betreff "Radonfachleute" zu richten an: strahlenschutz(at)mwu.sachsen-anhalt.de Mit Ihrem Antrag auf Aufnahme in die Liste geben Sie gemäß Artikel 6 Abs. 1 Buchstabe a Datenschutz-Grundverordnung Ihre Einwilligung, dass Ihr Name, Ihre E-Mail-Adresse und Ihre Telefonnummer (personenbezogene Daten) in der beim Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU) geführten Liste gemeinsam mit weiteren Radonfachleuten aufgenommen und diese Liste im Internet auf der Homepage des MWU veröffentlicht wird. Datenschutzhinweise Sie sind nicht zur oben genannten Einwilligung verpflichtet. Ohne Ihre Einwilligung können Ihre personenbezogenen Daten nicht in die Liste aufgenommen und im Internet veröffentlicht werden. Zudem können Sie Ihre Einwilligung jederzeit widerrufen. Durch den Widerruf der Einwilligung wird die Rechtmäßigkeit der aufgrund der Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Die personenbezogenen Daten werden solange gespeichert, wie sie für die Verarbeitungszwecke, für die sie erhoben wurden, notwendig sind, längstens jedoch 30 Jahre. Die personenbezogenen Daten werden unverzüglich gelöscht, soweit Sie Ihre Einwilligung widerrufen. Weiterhin steht Ihnen gegenüber dem Verantwortlichen ein Recht auf Auskunft über die Sie betreffenden personenbezogenen Daten sowie auf Berichtigung oder Löschung oder auf Einschränkung der Verarbeitung sowie das Recht auf Datenübertragbarkeit zu. Verantwortlicher im Sinne der Datenschutz-Grundverordnung ist das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt, Leipziger Straße 58, 39112 Magdeburg; der behördliche Datenschutzbeauftragte des Ministeriums ist erreichbar unter der E-Mail-Adresse Datenschutz(at)mwu.sachsen-anhalt.de. Zudem besteht für Sie ein Beschwerderecht bei einer Aufsichtsbehörde in einem der EU-Mitgliedstaaten. In der Bundesrepublik Deutschland sind sowohl die Bundesbeauftragte für den Datenschutz und die Informationsfreiheit (BfDI) als auch die Datenschutzbeauftragten der Länder Aufsichtsbehörden im Sinne der Datenschutz-Grundverordnung. Aufsichtsbehörde im Land Sachsen-Anhalt ist der Landesbeauftragte für den Datenschutz Sachsen-Anhalt, Leiterstraße 9, 39104 Magdeburg. Mit der Bekanntgabe der Radonvorsorgegebiete in Sachsen-Anhalt wurden viele Fragen an das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt (MWU) gerichtet. Auf einer eigens eingerichteten FAQ-Seite sind alle Fragen und Antworten zum Thema Festlegung von Radonvorsorgegebieten übersichtlich zusammengestellt. zum FAQ -Festlegung von Radonvorsorgegebieten Durch die Festlegung besteht seit dem 31. Dezember 2020 in den Radonvorsorgegebieten eine Messpflicht für Arbeitsplatzverantwortliche nach § 127 Strahlenschutzgesetz. Innerhalb von 18 Monaten sind an allen Arbeitsplätzen im Keller und im Erdgeschoss Messungen der Radon-222-Aktivitätskonzentration in der Raumluft durchzuführen. Die Messungen sollen an repräsentativen Messorten über eine Dauer von 12 Monaten erfolgen. Mit der Messung der Radonkonzentration muss ein vom Bundesamt für Strahlenschutz anerkannter Anbieter beauftragt werden. Diese Anbieter werden in einer regelmäßig aktualisierten Liste bekannt gegeben: https://www.bfs.de/DE/themen/ion/umwelt/radon/schutz/messen.html Es ist empfehlenswert, bei mehreren Anbietern ein Angebot für die Messungen einzuholen. Ergibt eine Messung eine Überschreitung des Referenzwertes, sind gemäß § 128 Strahlenschutzgesetz durch den Arbeitsplatzverantwortlichen unverzüglich geeignete Maßnahmen zur Reduzierung der Radon-222-Aktivitätskonzentration in der Raumluft zu treffen.  Der Erfolg der getroffenen Maßnahmen ist durch Messungen zu überprüfen. Zuständig für den Schutz vor Radon an Arbeitsplätzen in Innenräumen ist das Landesamt für Verbraucherschutz . Abhängig von der Überschreitung des Referenzwertes der Radon-222-Aktivitätskonzentration in der Raumluft sind organisatorische, technische oder bauliche Maßnahmen zur Senkung der Radon-222-Konzentration durchzuführen. Dies kann beispielsweise die regelmäßige Lüftung der betroffenen Räume, die Installation einer automatischen Lüftungsanlage oder die Abdichtung von Türen, Leitungen oder anderen Zugängen zwischen Aufenthaltsräumen und Räumen, in die Radon über das Fundament eindringen kann (z.B. Kellerräume), sein. Sollten sich nach Ergreifen dieser einfacheren Maßnahmen weiterhin erhöhte Messwerte (> 300 Bq/m³) ergeben, sollte zur weiteren Beratung ein fachkundiger Dienstleister hinzugezogen werden. Dieser hilft beim Auffinden versteckter Risse oder undichter Stellen und berät zu weiterführenden Maßnahmen, wie einer Versiegelung oder der Installation von Absaugvorrichtungen. Auch in Gebäuden, welche nicht in Radonvorsorgegebieten liegen, kann zum Beispiel aufgrund von Schäden im Gemäuer oder mangelnder Durchlüftung eine erhöhte Radon-222-Konzentration in der Raumluft auftreten. Obwohl dort keine gesetzlichen Pflichten für Arbeitsplatzverantwortliche bestehen, sollten dennoch Maßnahmen zum Gesundheitsschutz getroffen werden. Weiterführende Informationen über die Maßnahmen zum Schutz vor Radon bietet das Bundesamt für Strahlenschutz: https://www.bfs.de/DE/themen/ion/umwelt/radon/schutz/massnahmen.html Nach § 123 Strahlenschutzgesetz sind bei der Errichtung eines Gebäudes mit Aufenthaltsräumen oder Arbeitsplätzen geeignete Maßnahmen zu treffen, um den Zutritt von Radon aus dem Baugrund zu verhindern bzw. erheblich zu erschweren. Diese Pflicht gilt für Neu- oder Umbauten von Arbeitsplatzverantwortlichen und privaten Bauherren. Im gesamten Landesgebiet von Sachsen-Anhalt sind zum Schutz vor Radon die nach den allgemein anerkannten Regeln der Technik erforderlichen Maßnahmen zum Feuchteschutz einzuhalten. In den festgelegten Radonvorsorgegebieten ist gemäß § 154 der Strahlenschutzverordnung darüber hinaus mindestens eine der folgenden Maßnahmen durchzuführen: Verringerung der Radon-222-Aktivitätskonzentration unter dem Gebäude Gezielte Beeinflussung der Luftdruckdifferenz zwischen Gebäudeinnerem und der Bodenluft Begrenzung von Rissbildungen in Wänden oder Böden und Auswahl diffusionshemmender Betonsorten Absaugung von Radon Einsatz diffusionshemmender, konvektionsdicht verarbeiteter Materialien oder Konstruktionen. In den Jahren 2001 und 2002 hat das Bundesamt für Strahlenschutz insgesamt 1.670 Langzeitmessungen in bestehenden Wohnungen und Gebäuden in auffälligen Gebieten in Sachsen-Anhalt durchgeführt, wobei eine Weitergabe der bewerteten Ergebnisse an die Betroffenen erfolgte. Auch das Land Sachsen-Anhalt hat Messungen durchgeführt. In öffentlichen Räumlichkeiten mit Radonkonzentrationen von zum Teil über 400 Bq/m³ konnte bereits durch einfache Maßnahmen eine ausreichende Verringerung der Radonkonzentration erreicht werden.

Chemical composition and Sr, Nd, Pb isotope ratios of mafic igneous rocks from the Ordovician Saxothuringian basin east of and within the post-Devonian Müncheberg massif, NE Bavaria, Germany

The sampling area is located east (E-domain) and west (W-domain) of the Münchberg gneiss massif, NE Bavaria. Germany. Major and trace element compositions and Sr, Nd, and Pb isotope composition of a selected subset of Ordovician samples and post- Devonian samples of mafic igneous rocks are documented in the Table 1 'E-domain'. Sr, Nd, and Pb isotope composition of selected mafic igneous rocks from the W-domain of Ordovicician, Silurian, and Devonian age are documented together with the previously analysed Rb-Sr, Sm-Nd, U-Th-Pb concentrations (Höhn et. al., 2018, doi:10.1007/s00531-017-1497-2) in the Table 2 'W-domain'.

Sr, Nd, Pb isotope ratios of Ordovician, Silurian, and Devonian mafic igneous rocks from the Saxothuringian basin west of the Müncheberg massif, NE Bavaria, Germany

The sampling area is located east (E-domain) and west (W-domain) of the Münchberg gneiss massif, NE Bavaria. Germany. Major and trace element compositions and Sr, Nd, and Pb isotope composition of a selected subset of Ordovician samples and post- Devonian samples of mafic igneous rocks are documented in the Table 1 'E-domain'. Sr, Nd, and Pb isotope composition of selected mafic igneous rocks from the W-domain of Ordovicician, Silurian, and Devonian age are documented together with the previously analysed Rb-Sr, Sm-Nd, U-Th-Pb concentrations (Höhn et. al., 2018, doi:10.1007/s00531-017-1497-2) in the Table 2 'W-domain'.

INSPIRE TH Hydro - Network ATKIS Basis-DLM

Anhang I der INSPIRE-Richtlinie definiert dieses Thema wie folgt: „Elemente des Gewässernetzes, einschließlich Meeresgebieten und allen sonstigen Wasserkörpern und hiermit verbundenen Teilsystemen, darunter Einzugsgebiete und Teileinzugsgebiete. Gegebenenfalls gemäß den Definitionen der Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik (2) und in Form von Netzen.“ Die Daten werden halbjährlich aus dem Basis-DLM abgeleitet.

1 2 3 4 5412 413 414