s/troposheric ozone/tropospheric ozone/gi
<p>Sommerlich hohe Lufttemperatur birgt für Mensch und Umwelt ein hohes Schädigungspotenzial. Der Klimawandel führt nachweislich vermehrt zu extremer Hitze am Tag und in der Nacht, wodurch sich die gesundheitlichen Risiken für bestimmte Personengruppen erhöhen können. Für die Gesundheit von besonderer Bedeutung sind Phasen mit mehrtägig anhaltender, extremer Hitze.</p><p>Indikatoren der Lufttemperatur: Heiße Tage und Tropennächte</p><p>Die klimatologischen Kenngrößen „Heiße Tage“ und „Tropennächte“ des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) werden unter anderem zur Beurteilung von gesundheitlichen Belastungen verwendet. So ist ein „Heißer Tag“ definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius (°C) liegt, und eine „Tropennacht“ als Nacht, deren niedrigste Temperatur 20 °C nicht unterschreitet.</p><p>Die raumbezogene Darstellung von „Heißen Tagen“ (HT) und „Tropennächten“ (TN) über die Jahre 2000 bis 2024 zeigt, dass diese zum Beispiel während der extremen „Hitzesommer“ in den Jahren 2003, 2015, 2018 und 2022 in Deutschland verstärkt registriert wurden (siehe interaktive Karte „Heiße Tage/Tropennächte“).</p><p>Zu beachten ist, dass <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> regional unterschiedlich verteilt und ausgeprägt sein können, wie die Sommer der Jahre 2015, 2018, 2019 und 2022 zeigen. So traten Heiße Tage 2015 erheblich häufiger in Süddeutschland (maximal 40 HT) als in Norddeutschland (2015: maximal 18 HT) auf. Auch Tropennächte belasteten die Menschen im Süden und Westen Deutschlands häufiger: 2015 in Südwestdeutschland (maximal 13 TN). Besonders und wiederkehrend betroffen von extremer Hitze Demgegenüber betraf die extreme Hitze der Sommer 2018 und 2019 sind einige Teilregionen Süd- und Südwestdeutschlands (oberes Rheintal und Rhein-Maingebiet) sowie weite Teile Mittel- und Ostdeutschlands, wie Südbrandenburg und Sachsen (bis zu 45 HT und 13 TN). Während 2022 vor allem die Oberrheinische Tiefebene von Basel bis Frankfurt am Main sowie weitere Ballungsräume in Süddeutschland mit weit mehr als 30 Heißen Tage betroffen waren, lag der Hitzeschwerpunkt des Sommers 2024 mit bis zu 30 Heißen Tagen erneut in Brandenburg und Sachsen, bei nur sehr wenigen Tropennächten.</p><p>Informationen zur interaktiven Karte</p><p>Quellen: <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> 2000-2025 – <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>/Climate Data Center, <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2000-2025 – DWD/Climate Data Center; Daten für 2025 – Persönliche Mitteilung des DWD vom 14.11.2025.</p><p>Die Bearbeitung der interaktiven Karte erfolgt durch das Umweltbundesamt, FG I 1.6 und I 1.7.</p><p>Gesundheitsrisiko Hitze</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Klimamodelle prognostizieren, dass der Anstieg der mittleren jährlichen Lufttemperatur zukünftig zu wärmeren bzw. heißeren Sommern mit einer größeren Anzahl an Heißen Tagen und Tropennächten führen wird. Extreme Hitzeereignisse können dann häufiger, in ihrer Intensität stärker und auch länger anhaltend auftreten. Es gibt bereits belastbare Hinweise darauf, dass sich die maximale Lufttemperatur in Deutschland in Richtung extremer Hitze verschieben wird (vgl. Friedrich et al. 2023). Dieser Trend ist in der Abbildung „Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 Grad Celsius“ bereits deutlich erkennbar.</p><p>Die mit der Klimaerwärmung verbundene zunehmende Hitzebelastung ist zudem von erheblicher gesundheitlicher Bedeutung, da sie den Organismus des Menschen in besonderer Weise beansprucht und zu Problemen des Herz-Kreislaufsystems führen kann. Außerdem fördert eine hohe Lufttemperatur zusammen mit intensiver Sonneneinstrahlung die Entstehung von gesundheitsgefährdendem bodennahem Ozon (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-ozon">„Gesundheitsrisiken durch Ozon“</a>). Anhaltend hohe Lufttemperatur während Hitzeperioden stellt ein zusätzliches Gesundheitsrisiko für die Bevölkerung dar. Bei Hitze kann das körpereigene Kühlsystem überlastet werden. Als Folge von Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit chronischen Vorerkrankungen (wie zum Beispiel Herz-Kreislauf-Erkrankungen) sind von diesen Symptomen besonders betroffen. So werden während extremer Hitze einerseits vermehrt Rettungseinsätze registriert, andererseits verstarben in den beiden Hitzesommern 2018 und 2019 in Deutschland insgesamt etwa 15.600 Menschen zusätzlich an den Folgen der Hitzebelastung (vgl. Winklmayr et al. 2022). Modellrechnungen prognostizieren für Deutschland, dass zukünftig mit einem Anstieg hitzebedingter Mortalität von 1 bis 6 Prozent pro einem Grad Celsius Temperaturanstieg zu rechnen ist, dies entspräche über 5.000 zusätzlichen Sterbefällen pro Jahr durch Hitze bereits bis Mitte dieses Jahrhunderts.</p><p>Der Wärmeinseleffekt: Mehr Tropennächte in Innenstädten</p><p>Eine Studie untersuchte die klimatischen Verhältnisse von vier Messstationen in Berlin für den Zeitraum 2001-2015 anhand der beiden Kenngrößen „Heiße Tage“ und „Tropennächte“. Während an den unterschiedlich gelegenen Stationen die Anzahl Heißer Tage vergleichbar hoch war, traten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> an der innerhalb dichter, innerstädtischer Bebauungsstrukturen gelegenen Station wesentlich häufiger (mehr als 3 mal so oft) auf, als auf Freiflächen (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Eine Innenstadt speichert die Wärmestrahlung tagsüber und gibt sie nachts nur reduziert wieder ab. Die innerstädtische Minimaltemperatur kann während der Nacht um bis zu 10 Grad Celsius über der am Stadtrand liegen. Dies ist als städtischer Wärmeinseleffekt bekannt.</p><p>Hitzeperioden</p><p>Von besonderer gesundheitlicher Bedeutung sind zudem Perioden anhaltender Hitzebelastung (umgangssprachlich „Hitzewellen“), in denen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> in Kombination mit Tropennächten über einen längeren Zeitraum auftreten können. Sie sind gesundheitlich äußerst problematisch, da Menschen nicht nur tagsüber extremer Hitze ausgesetzt sind, sondern der Körper zusätzlich auch in den Nachtstunden durch eine hohe Innenraumtemperatur eines wärmegespeicherten Gebäudes thermophysiologisch belastet ist und sich wegen der fehlenden Nachtabkühlung nicht ausreichend gut erholen kann. Ein Vergleich von Messstellen des Deutschen Wetterdienstes (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DWD#alphabar">DWD</a>) in Hamburg, Berlin, Frankfurt/Main und München zeigt, dass beispielsweise während der <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2003 und 2015 in Frankfurt/Main 6 mehrtägige Phasen beobachtet wurden, an denen mindestens 3 aufeinanderfolgende Heiße Tage mit sich unmittelbar anschließenden Tropennächten kombiniert waren (vgl. <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/uba_krug_muecke.pdf">Krug & Mücke 2018</a>). Zu erwarten ist, dass mit einer weiteren Erwärmung des Klimas die Gesundheitsbelastung durch das gemeinsame Auftreten von Heißen Tagen und Tropennächten während länger anhaltender Hitzeperioden – wie sie zum Beispiel in den Sommern der Jahre 2003, 2006, 2015 und vor allem 2018 in Frankfurt am Main beobachtet werden konnten – auch in Zukunft zunehmen wird (siehe Abb. „Heiße Tage und <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tropennchte#alphabar">Tropennächte</a> 2001 bis 2020“). Davon werden insbesondere die in den Innenstädten (wie in Frankfurt am Main) lebenden Menschen betroffen sein. Eine Fortschreibung der Abbildung über das Jahr 2020 hinaus ist aktuell aus technischen Gründen leider nicht möglich. </p><p><em>Tipps zum Weiterlesen: </em></p><p><em>Winklmayr, C., Muthers, S., Niemann, H., Mücke, H-G, an der Heiden, M (2022): Hitzebedingte Mortalität in Deutschland zwischen 1992 und 2021. Dtsch Arztebl Int 2022; 119: 451-7; DOI: 10.3238/arztebl.m2022.0202</em></p><p><em>Bunz, M. & Mücke, H.-G. (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> – physische und psychische Folgen. In: Bundesgesundheitsblatt 60, Heft 6, Juni 2017, S. 632-639.</em></p><p><em>Friedrich, K. Deutschländer, T., Kreienkamp, F., Leps, N., Mächel, H. und A. Walter (2023): Klimawandel und Extremwetterereignisse: Temperatur inklusive Hitzewellen. S. 47-56. In: Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. 2. Auflage, 527 S., über 100 Abb., Berlin Heidelberg. ISBN 978-3-662-6669-8 (eBook): Open Access.</em></p>
<p>Land-Ökosysteme sind vielfältigen äußeren Belastungen ausgesetzt und können ihre natürliche Funktions- und Ertragsfähigkeit verlieren. Der Schutz von natürlichen Land-Ökosystemen wie Wäldern oder Heiden ist entscheidend für die nachhaltige Nutzung dieser Gebiete.</p><p>Genau wie bewirtschaftete Ökosysteme unterliegen auch natürliche Land-Ökosysteme einer Vielzahl von Umweltbelastungen. Nährstoff- und Schadstoffeinträge aus der Luft stören die Funktionsfähigkeit und die biologische Vielfalt dieser Naturräume. Hinzu kommen weitere Umweltwirkungen, wie zum Beispiel durch bodennahes Ozon, das die Vegetation von Ökosystemen schädigen kann oder ökologische Belastungen durch Altlasten (beispielsweise durch stillgelegte Abfallbeseitigungsanlagen oder Industriestandorte). <br><br>Zur Bewertung der Belastungen werden beispielweise ökosystemspezifische Belastungsgrenzen – sogenannte <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Critical_Loads_fr_Eutrophierung#alphabar">Critical Loads für Eutrophierung</a> oder <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a> - erforscht, die den tatsächlichen Schadstoffeinträgen gegenübergestellt werden.</p>
Kontinuierliche Messung des bodennahen Ozons in verschiedenen Hoehen ueber Grund (bis zu 30 m). Bestimmung der Jahres-, Monat- und Tagesgaenge. Erforschung des Zusammenhangs mit meterologischen Groessen. Untersuchung der Ursachen gefundener kurzzeitiger Extremwerte (bis 500 nb) des natuerlichen Ozons. Untersuchung der Zusammenhaenge zwischen bodennahem Ozon und anthropogenen Spurengasen (z.B. SO2).
In Deutschland ist die Landwirtschaft für über 59 % der Methan- und 95 % der Ammoniakemissionen verantwortlich . Methan hat ein etwa 84-mal höheres kurzfristiges Treibhauspotenzial als CO2 (IPPC), weshalb der schnellen Reduzierung von Methanemissionen zur Verlangsamung des Klimawandels Priotität eingeräumt werden muss. Zusätzlich ist es eine Vorläufersubstanz bei der Bildung von bodennahem Ozon, das Pflanzen schädigt, indirekt zum Klimawandel beitragen kann und zusätzlich zu Beeinträchtigungen der menschlichen Gesundheit führt. Die wichtigsten Quellen von Methan sind Emissionen während des tierischen Verdauungsprozesses von Wiederkäuern und Emissionen durch die Lagerung von Festmist und Gülle. Zielsetzung des Projektes ist die Entwicklung einer digitalisierten Biogasanlage zur Vergärung von Flüssigmist für landwirtschaftliche Betriebe mit einem Tierbestand ab ca. 170 Großvieheinheiten (GV). Diese Güllekleinanlagen verwenden eine einstufige Güllevergärung und basieren auf einem kostengünstigen, vollständig recyclierbaren Rührkesselreaktor. Innerhalb der Verbundvorhabens wird die Professur Sensorik der TU Dortmund neuartige, mikrostrukturierte Prozesssensorik entwickeln und zur vollständigen Digitalisierung des Anlagentyps nutzen. Damit wird insbesondere ein automatischer Betrieb der Anlagen sowie die Internet-basierte Zustandsüberwachung der Anlagen möglich. Hierzu wird die Gesamtanlagensteuerung basierend auf hochselektiver und hochempfindlicher, resonatorverstärkter direkter Multigassensorik realisiert.
In einem Guidance-Dokument für die Berichterstattung zum Wirkungsmonitoring nach der NEC-Richtlinie wird empfohlen, bei der Erhebung der Wirkungen Gebiete mit hoher Luftschadstoffbelastung aber auch Hintergrundgebiete, die unterschiedliche Empfindlichkeit der Ökosystemtypen und Faktoren, die die Wirkung beeinflussen, wie z. B. Klimazonen, zu berücksichtigen, um die Wirkungen repräsentativ zu erfassen. In dem Vorhaben soll zunächst allein aufgrund wissenschaftlicher Aspekte ein Messnetz für Ozon entwickelt werden, das den Anspruch der räumlichen Repräsentativität in Bezug auf oben genannte Aspekte sehr gut erfüllt. Mit Hilfe geostatistischer Verfahren sollen Raumeinheiten identifiziert werden, die hinsichtlich der Wirkungen bodennahen Ozons auf die Vegetation ähnliche Voraussetzungen bieten und auf dieser Grundlage die erforderliche Mindestprobenzahl bestimmt werden. Im Anschluss soll ein Optimierungsvorschlag, basierend auf dem derzeitigen Messnetz mit Fokus auf die Anforderungen an das Wirkungsmonitoring nach der NEC Richtlinie, erarbeitet werden.
GOME (Global Ozone Monitoring Experiment) stands for a family of satellite instruments named after the first GOME (https://wdc.dlr.de/sensors/gome/) instrument on ERS-2 launched in April 1995. Currently two GOME-2 instruments are operative on Metop-A and B (https://wdc.dlr.de/sensors/gome2/). The tropical tropospheric ozone is retrieved with convective cloud differential method (Valks et al., 2014 http://www.atmos-meas-tech.net/7/2513/2014/amt-7-2513-2014.html). The tropospheric column is retrieved by subtracting the stratospheric ozone column from the total column. The stratospheric ozone column is estimated as the column above high reaching convective clouds.
<p>Bodennahes Ozon und hohe Lufttemperatur bergen für Mensch und Umwelt nach wie vor ein hohes Schädigungspotenzial. Der Klimawandel kann zu mehr Heißen Tagen führen, was die Bildung von Ozon fördern und die damit verbundenen gesundheitlichen Risiken erhöhen kann.</p><p>Gesundheitliche Risiken von Ozon und hoher Lufttemperatur</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beeinflusst in vielfältiger Weise unsere Umwelt. Der Anstieg der mittleren jährlichen Lufttemperatur führt derzeit bereits zu wärmeren bzw. heißeren Sommern und zukünftig wahrscheinlich auch zu milderen Wintern. Eine hohe Lufttemperatur begünstigt gemeinsam mit intensiver Sonneneinstrahlung die Bildung von Ozon in Bodennähe. Dies führt bei anhaltend sommerlicher Schönwetterlage neben der Hitzebelastung auch zu einer erhöhten gesundheitlichen Belastung durch hohe bodennahe Ozonkonzentrationen.</p><p>Zur Charakterisierung der Ozonbelastung dient der Wert von 120 Mikrogramm pro Kubikmeter (µg/m³) als 8-Stunden-Mittelwert. Während der letzten extremen <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Hitzesommer#alphabar">Hitzesommer</a> 2018 und 2022 (siehe <a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-hitze">„Gesundheitsrisiken durch Hitze“</a>) wurde dieser EU-Zielwert für Ozon zum Beispiel an der Messstation in Stuttgart-Bad Cannstatt 47- und 40-mal überschritten. Zur besseren Einordnung des umweltbezogenen Gesundheitsrisikos dient zudem die Kenngröße „Heißer Tag“ des Deutschen Wetterdienstes, definiert als Tag, dessen höchste Temperatur oberhalb von 30 Grad Celsius liegt. In den Sommern 2018 und 2022 wurden an der Messstation in Stuttgart-Schnarrenberg 29 und 30 <a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Heie_Tage#alphabar">Heiße Tage</a> registriert. Beide Messgrößen sind in der Abbildung „Überschreitungen des Zielwertes für Ozon und Anzahl Heißer Tage in Stuttgart“ dargestellt.</p><p>* Zahl der Tage mit Überschreitung des Ozon-Zielwertes (120 µg/m³) zum Schutz der menschlichen Gesundheit als 8-Std.-MW</p><p>Gesundheitliche Wirkungen</p><p>Ozon ist ein Reizgas. An Tagen mit hoher Ozonkonzentration leiden viele Menschen an Reizerscheinungen der Augen (Tränenreiz), Atemwegsbeschwerden (Husten) und Kopfschmerzen. Diese Reizungen treten weitgehend unabhängig von der körperlichen Aktivität auf. Ihr Ausmaß wird primär durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt. Besonders nach reger körperlicher Aktivität im Freien wurde bei Schulkindern und Erwachsenen eine verminderte Lungenfunktion sowie eine Einschränkung der körperlichen Leistungsfähigkeit festgestellt. Diese funktionellen Veränderungen und Beeinträchtigungen normalisierten sich im Allgemeinen spätestens 48 Stunden nach Expositionsende. Bei einem erhöhten Atemvolumen, zum Beispiel bei körperlicher Anstrengung, kann Ozon tief in das Lungengewebe vordringen, dort das Gewebe schädigen und Entzündungen hervorrufen. Im Gegensatz zur Veränderung der Lungenfunktionswerte bildeten sich entzündliche Reaktionen des Lungengewebes nur teilweise zurück. Atemwegs- und Herz-Kreislauf-Erkrankungen sind mit dem Auftreten erhöhter bodennaher Ozonkonzentrationen assoziiert.</p><p>Eine hohe Lufttemperatur während Hitzeperioden kann ein zusätzliches Risiko für die Gesundheit der Bevölkerung darstellen. Bei sehr hohen Temperaturen kann das körpereigene Kühlsystem überlastet werden. Als Folge der Hitzebelastung können bei empfindlichen Personen Regulationsstörungen und Kreislaufprobleme auftreten. Typische Symptome sind Kopfschmerzen, Erschöpfung und Benommenheit. Ältere Menschen und Personen mit Herz-Kreislauf-Erkrankungen sind von diesen Symptomen besonders betroffen. <br><br>Klimamodelle prognostizieren, dass sich die gesundheitlichen Risiken von Phasen mit erhöhter sommerlicher Luftverschmutzung – unter anderem mit Ozon – im Zusammenwirken mit sommerlicher Hitze zukünftig erhöhen werden. Zudem wird vermutet, dass sich beide Einzelbelastungen in ihrer Kombinationswirkung verstärken können.</p><p><em>Tipps zum Weiterlesen: </em><br><br><em>Mücke, H.-G. (2014): Gesundheitliche Auswirkungen von atmosphärisch beeinflussten Luftverunreinigungen. Kapitel 3.1.3, S. 1-7. In: Lozan et al. (Hrsg.): Warnsignal <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>: Gesundheitsrisiken; Gefahren für Pflanzen, Tiere und Menschen. GEO Wissenschaftliche Auswertungen, Hamburg.<br><br>Mücke, H.-G. und A. Matzarakis (2017): <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> und Gesundheit. In: Wichmann et al. (Hrsg.): Handbuch der Umweltmedizin, Kapitel VIII-1.10, 38 Seiten. Ecomed Verlag, Landsberg.</em></p><p><em>Augustin J. et al. (202</em>3<em>): Gesundheit. Teil III, Kapitel 14. S. 171-189. </em><em>In: </em><em>Guy P. Brasseur, Daniela Jacob, Susanne Schuck-Zöller (Hrsg.) (2023): Klimawandel in Deutschland, 2. überarb. und erweiterte Auflage, Springer Spektrum, Heidelberg.</em></p><p>Weniger bodennahes Ozon ist möglich</p><p>Gesundheitliche Belastungen durch höhere Ozonkonzentrationen in Bodennähe sind zu vermeiden. Hierzu müssen die Zielwerte und langfristigen Ziele für Ozon zum Schutz der menschlichen Gesundheit erreicht und auf Dauer eingehalten werden. Die Europäische Union (EU) hat im Jahr 2002 in der <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1582627655982&uri=CELEX:32002L0003">Richtlinie über den Ozongehalt in der Luft</a> einen Ozonzielwert zum Schutz der menschlichen Gesundheit festgelegt und ihn im Jahr 2008 mit der <a href="https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:32008L0050">Richtlinie über Luftqualität und saubere Luft</a> bestätigt:</p><p>Um die gesundheitlichen Belastungen durch Ozon zu verringern, müssen die Emissionen jener Schadstoffe sinken, welche als Vorläufersubstanzen die Ozonbildung befördern. Dazu zählen vor allem Stickstoffoxide (NOx) und flüchtige Kohlenwasserstoffe. Möglichkeiten, die Emissionen dieser Luftschadstoffe zu senken, bestehen im Verkehrssektor, innerhalb des Einsatzes von <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> zur Energiegewinnung, durch Energieeinsparmaßnahmen sowie bei der Lösemittelverwendung in Industrie, Gewerbe und Haushalten.</p><p>Weiterführende Informationen</p><p><a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1582627655982&uri=CELEX:32002L0003">Richtlinie über den Ozongehalt in der Luft</a></p><p><a href="https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:32008L0050">Richtlinie über Luftqualität und saubere Luft</a></p>
<p>Die Höhe der Ozon-Spitzenkonzentrationen und die Häufigkeit sehr hoher Ozonwerte haben seit Mitte der 1990er-Jahre deutlich abgenommen. Der Zielwert zum Schutz der menschlichen Gesundheit wird jedoch weiterhin überschritten. Im Unterschied zu der Entwicklung der Spitzenwerte nahmen die Ozon-Jahresmittelwerte in städtischen Wohngebieten im gleichen Zeitraum zu.</p><p>Überschreitung von Schwellenwerten</p><p>Um gesundheitliche Risiken für die Bevölkerung bei kurzfristiger <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Exposition#alphabar">Exposition</a> gegenüber erhöhten Ozonkonzentrationen auszuschließen, legt die <a href="https://www.bmuv.de/gesetz/39-verordnung-zur-durchfuehrung-des-bundes-immissionsschutzgesetzes/">39. BImSchV</a> Informations- und Alarmschwellenwerte fest (siehe Tab. „Zielwerte, langfristige Ziele und Alarmschwellen für den Schadstoff Ozon“). Der Informationsschwellenwert von 180 Mikrogramm pro Kubikmeter (µg/m³), gemittelt über eine Stunde, dient dem Schutz der Gesundheit besonders empfindlicher Bevölkerungsgruppen. Bei der Überschreitung des Alarmschwellenwertes von 240 µg/m³, gemittelt über eine Stunde, besteht ein Gesundheitsrisiko für die Gesamtbevölkerung.</p><p>Seit 1995 hat die Zahl der Stunden mit Ozonwerten über 180 beziehungsweise 240 µg/m³ deutlich abgenommen (siehe Abb. „Überschreitungsstunden der Informationsschwelle (180 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen“ und Abb. „Überschreitungsstunden der Alarmschwelle (240 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen)“). Diese Abnahme ist von zwischenjährlichen Schwankungen überlagert, die auf die jährlich schwankenden meteorologischen sommerlichen Witterungsbedingungen zurückzuführen sind. Besonders deutlich ist dies im Jahr 2003 erkennbar. Im Sommer 2003 wurde eine außergewöhnlich langanhaltende Wettersituation beobachtet, welche die Ozonbildung begünstigte. Der Ozonsommer 2003 ist daher hinsichtlich der Spitzenwerte ein Sonderfall.</p><p>Verglichen mit dem Jahr 1990 sind die Emissionen der Ozonvorläuferstoffe (Stickstoffoxide und flüchtige organische Verbindungen ohne Methan) in Deutschland bis 2023 um 70 % beziehungsweise 75 % zurückgegangen (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen">„Stickstoffoxid-Emissionen“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-fluechtiger-organischer-verbindungen-ohne">„Emission flüchtiger organischer Verbindungen ohne Methan“</a>). Der geringere Ausstoß von Ozonvorläufersubstanzen führte bereits in den 1990er Jahren zu einer Abnahme der Ozonspitzenwerte.</p><p>Zielwerte und langfristige Ziele für Ozon</p><p>Seit 2010 gibt es zum Schutz der menschlichen Gesundheit für Ozon einen europaweit einheitlichen Zielwert: 120 Mikrogramm pro Kubikmeter (µg/m³) als 8-Stunden-Mittel sollen nicht öfter als 25-mal pro Kalenderjahr, gemittelt über drei Jahre, überschritten werden. Um die meteorologische Variabilität der einzelnen Jahre bei einer langfristigen Betrachtung zu berücksichtigen, wird über einen Zeitraum von drei Jahren gemittelt. Die meisten Überschreitungen werden an ländlichen Hintergrundstationen registriert, also entfernt von den Quellen der Vorläuferstoffe (siehe Abb. „Prozentualer Anteil der Messstationen mit Überschreitung des Zielwertes für Ozon“). Das liegt daran, dass Stickstoffmonoxid (NO), das in Autoabgasen enthalten ist, mit Ozon reagiert. Dabei wird Ozon abgebaut, so dass die Ozonbelastung in Innenstädten deutlich niedriger ist. Andererseits werden die Ozonvorläuferstoffe mit dem Wind aus den Städten heraus transportiert und tragen entfernt von deren eigentlichen Quellen zur Ozonbildung bei.</p><p>Langfristig soll der 8-Stunden-Mittelwert von 120 µg/m³ während eines Kalenderjahres nicht mehr überschritten werden. Dieses Ziel wird in Deutschland allerdings an kaum einer Station eingehalten. Die höchste Zahl an Überschreitungstagen wird üblicherweise an ländlichen Hintergrundstationen registriert (siehe Abb. „Zahl der Tage mit Überschreitung des Ozon-Zielwertes (120 µg/m³) zum Schutz der menschlichen Gesundheit, Mittelwert über ausgewählte Stationen“).</p><p>Entwicklung der Jahresmittelwerte</p><p>Jahresmittelwerte der Ozonkonzentrationen spielen bei der Bewertung der Belastung eine nachgeordnete Rolle. Dennoch können sie zur Beurteilung der Immissionssituation verwendet werden. Die Jahresmittelwerte haben eine größere Bedeutung für die langfristige Entwicklung der Ozonbelastung, sofern historische Werte herangezogen werden.</p><p>Die Jahresmittelwerte der Ozonkonzentration von 1995 bis 2024 zeigen an städtischen Stationen insgesamt einen zunehmenden Trend. Einerseits nahmen die Ozonspitzenwerte durch die Minderungsmaßnahmen für die NOx- und <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>-Emissionen in Deutschland deutlich ab, andererseits führte dies wegen der Verringerung des Titrationseffekts (Ozonabbau durch Stickstoffmonoxid) zu einem Anstieg der mittelhohen Ozonkonzentrationen, was schließlich bei den Jahresmittelwerten sichtbar wird (siehe Abb. „Trend der Ozon-Jahresmittelwerte“). Zudem wird von einer zunehmenden Bedeutung des interkontinentalen (hemisphärischen) Transports für die Ozonbelastung in Deutschland und Europa aufgrund der industriellen Emissionen in Asien und Nordamerika ausgegangen.</p><p>Bodennahes Ozon</p><p>Ozon (O3) wird nicht direkt freigesetzt, sondern bildet sich in den unteren Luftschichten der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> bis in etwa zehn Kilometer Höhe bei intensiver Sonneneinstrahlung durch komplexe photochemische Reaktionen von Sauerstoff und Luftverunreinigungen. Vor allem flüchtige organische Verbindungen (<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=VOC#alphabar">VOC</a> = volatile organic compounds) einschließlich Methan sowie Stickstoffoxide (NOx) sind an diesen Reaktionen beteiligt.</p><p>Herkunft</p><p>Die Emissionen von flüchtigen organischen Verbindungen und Stickstoffoxiden, den sogenannten Ozon-Vorläuferstoffen, werden überwiegend durch den Menschen verursacht. Hinzu kommt eine natürliche sogenannte Ozon-Hintergrundbelastung, die von hemisphärischem Transport und natürlichen Bildungsprozessen herrührt. Eine wichtige Quelle für die <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> der Ozon-Vorläuferstoffe stellt der Kraftfahrzeugverkehr dar. Darüber hinaus werden besonders aus dem Kraftwerksbereich Stickstoffoxide und aus der Anwendung von Lacken und Lösungsmitteln flüchtige organische Verbindungen emittiert (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen">„Stickstoffoxid-Emissionen“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-fluechtiger-organischer-verbindungen-ohne">„Emission flüchtiger organischer Verbindungen ohne Methan“</a>). Die Emissionen sind teilweise auch natürlichen Ursprungs, zum Beispiel Ausdünstungen flüchtiger organischer Stoffe aus Laub- und Nadelbäumen.</p><p>Gesundheitliche Wirkungen </p><p>Viele Menschen leiden an Tagen hoher Ozonkonzentration an Reizungen der Augen (Tränenreiz) und Schleimhäute (Husten) sowie − verursacht durch Begleitstoffe des Ozons − an Kopfschmerzen. Diese Reizungen sind von der körperlichen Aktivität weitgehend unabhängig. Ihr Ausmaß wird primär durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt.</p><p>Die Empfindlichkeit der Menschen gegenüber Ozon ist sehr unterschiedlich ausgeprägt. Eine Risikogruppe lässt sich nicht genau eingrenzen. Man geht davon aus, dass etwa 10 bis 15 Prozent der Bevölkerung (quer durch alle Bevölkerungsgruppen) besonders empfindlich auf Ozon reagieren.</p><p>Vor allem die Atemwege sind von der Ozonwirkung betroffen. Neben Reizungen der Schleimhäute in den oberen Atemwegen kann Ozon bei tiefer oder häufiger Einatmung (etwa bei körperlicher Aktivität) verstärkt bis in die tiefen Lungenabschnitte gelangen und dort durch seine hohe Reaktionsbereitschaft Gewebe schädigen und entzündliche Prozesse auslösen. Vor allem nach reger körperlicher Aktivität im Freien wurde bei Schulkindern und Erwachsenen eine verminderte Lungenfunktion nachgewiesen. Diese funktionellen Veränderungen und Beeinträchtigungen normalisierten sich im Allgemeinen spätestens 48 Stunden nach Expositionsende. Im Gegensatz zur Veränderung der Lungenfunktionswerte bildeten sich entzündliche Reaktionen des Lungengewebes nur teilweise zurück.</p><p>Die Reizwirkungen sind im Sinne einer Vorschädigung des Lungengewebes zu verstehen, durch die sowohl eine Sensibilisierung durch chemische oder biologische Allergene ermöglicht als auch die Auslösung von allergischen Symptomen begünstigt werden kann.</p><p>Messdaten</p><p>Die Ozonkonzentration wird an rund 260 Messstationen in Deutschland überwacht. An den Messstellen, die das Umweltbundesamt im ländlichen Hintergrund betreibt, wurde im Zeitraum 1980 bis zum Ende der 1990er-Jahre ein Anstieg der Jahresmittelwerte der Ozonkonzentration registriert, der sich in den folgenden Jahren nicht fortsetzte.</p>
Methane is the second most important greenhouse gas after carbon dioxide. On top of this, methane is a key precursor for the formation of ground-level ozone. Ozone is linked to negative health effects whilst also damaging ecosystems and crops. Reducing methane emissions thus contributes to climate protection and also helps protect public health and ecosystems. For several years now, there have been efforts at both the international and European level to significantly reduce methane emissions and to set specific reduction targets. Despite the initiatives in place to abate methane emissions, many people remain unaware of how necessary a reduction is and the benefits this would bring. With this position paper, the German Environment Agency aims to provide information about the effects and the most important sources of methane whilst specifying concrete measures to reduce methane at a national level and worldwide. The paper is aimed primarily at political decision-makers. Veröffentlicht in Position.
Die laufende Messung des bodennahen Ozons ist in einer Grossstadt von grosser Bedeutung fuer Umweltfragen. Die Konzentration des bodennahen Ozons ist ein empfindlicher Modikator fuer stagnierende Luft. Ozonwerte, die wesentlich ueber dem Durchschnitt liegen, weisen auf eine Smoglage hin.
| Origin | Count |
|---|---|
| Bund | 147 |
| Land | 13 |
| Wissenschaft | 2 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 6 |
| Ereignis | 1 |
| Förderprogramm | 84 |
| Text | 43 |
| unbekannt | 26 |
| License | Count |
|---|---|
| geschlossen | 65 |
| offen | 94 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 116 |
| Englisch | 61 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 1 |
| Datei | 11 |
| Dokument | 31 |
| Keine | 91 |
| Webseite | 50 |
| Topic | Count |
|---|---|
| Boden | 160 |
| Lebewesen und Lebensräume | 160 |
| Luft | 160 |
| Mensch und Umwelt | 160 |
| Wasser | 160 |
| Weitere | 158 |