API src

Found 478 results.

Development of an integrated forest carbon monitoring system with field sampling and remote sensing for tropical forests in Indonesia

Forests play a relevant role in mitigation of climate change. A major issue, however, is the scientifically well founded, transparent and verifyable monitoring of achievements in forest carbon sequestration through reduction of deforestation and forest degradation, and through fostering sustainable forest management. Monitoring is particularly difficult in diverse and inaccessible humid tropical forest areas. The proposed research will contribute to the improvement of forest carbon monitoring under the challenging conditions of humid tropical forests. Sample based field observations and model based biomass predictions will be linked to area-wide satellite remote sensing imagery (RapidEye) and to strip samples of LiDAR imagery. Techniques of linking these data sources will be further developed and analysed with respect to (1) precision of carbon estimation and (2) accuracy of carbon regionalization. The proposed project implies research on methodological improvements of both sample based forest inventories (resampling techniques for biomass, imputation of non-response) and remote sensing application to forest monitoring (regionalization, sample based application of LiDAR data). At the core of this research is the analysis of the error variance components that each data source brings into the system. Such error analysis will allow identifying optimal resource allocation for the efficient improvement of forest carbon monitoring systems.

Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM), Forschergruppe (FOR) 1806: The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)

We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.

Beach sand deposits on the coast of southern Norway as a natural experimental setup to test hypotheses on soil development and luminescence dating

Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.

Trophic interactions in the soil of rice-rice and rice-maize cropping systems

Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.

Root distribution and dynamics and their contribution to subsoil C-fluxes

It has been suggested that dying and decaying fine roots and root exudation represent important, if not the most important, sources of soil organic carbon (SOC) in forest soils. This may be especially true for deep-reaching roots in the subsoil, but precise data to prove this assumption are lacking. This subproject (1) examines the distribution and abundance of fine roots (greater than 2 mm diameter) and coarse roots (greater than 2 mm) in the subsoil to 240 cm depth of the three subsoil observatories in a mature European beech (Fagus sylvatica) stand, (2) quantifies the turnover of beech fine roots by direct observation (mini-rhizotron approach), (3) measures the decomposition of dead fine root mass in different soil depths, and (4) quantifies root exudation and the N-uptake potential with novel techniques under in situ conditions with the aim (i) to quantify the C flux to the SOC pool upon root death in the subsoil, (ii) to obtain a quantitative estimate of root exudation in the subsoil, and (iii) to assess the uptake activity of fine roots in the subsoil as compared to roots in the topsoil. Key methods applied are (a) the microscopic distinction between live and dead fine root mass, (b) the estimation of fine and coarse root age by the 14C bomb approach and annual ring counting in roots, (c) the direct observation of the formation and disappearance of fine roots in rhizotron tubes by sequential root imaging (CI-600 system, CID) and the calculation of root turnover, (d) the measurement of root litter decomposition using litter bags under field and controlled laboratory conditions, (e) the estimation of root N-uptake capacity by exposing intact fine roots to 15NH4+ and 15NO3- solutions, and (f) the measurement of root exudation by exposing intact fine root branches to trap solutions in cuvettes in the field and analysing for carbohydrates and amino acids by HPLC and Py-FIMS (cooperation with Prof. A. Fischer, University of Trier). The obtained data will be analysed for differences in root abundance and activity between subsoil (100-200 cm) and topsoil (0-20 cm) and will be related to soil chemical and soil biological data collected by the partner projects that may control root turnover and exudation in the subsoil. In a supplementary study, fine root biomass distribution and root turnover will also be studied at the four additional beech sites for examining root-borne C fluxes in the subsoil of beech forests under contrasting soil conditions of different geological substrates (Triassic limestone and sandstone, Quaternary sand and loess deposits).

Biogenic soil structures: feedbacks between bioactivity and spatial heterogeneity of water storage and fluxes from plot to hillslope scale

Soil structure determines a large part of the spatial heterogeneity in water storage and fluxes from the plot to the hillslope scale. In recent decades important progress in hydrological research has been achieved by including soil structure in hydrological models. One of the main problems herein remains the difficulty of measuring soil structure and quantifying its influence on hydrological processes. As soil structure is very often of biogenic origin (macropores), the main objective of this project is to use the influence of bioactivity and resulting soil structures to describe and support modelling of hydrological processes at different scales. Therefore, local scale bioactivity will be linked to local infiltration patterns under varying catchment conditions. At hillslope scale, the spatial distribution of bioactivity patterns will be linked to connectivity of subsurface structures to explain subsurface stormflow generation. Then we will apply species distribution modelling of key organisms in order to extrapolate the gained knowledge to the catchment scale. As on one hand, bioactivity influences the hydrological processes, but on the other hand the species distribution also depends on soil moisture contents, including the feedbacks between bioactivity and soil hydrology is pivotal for getting reliable predictions of catchment scale hydrological behavior under land use change and climate change.

Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Die Bedeutung von Eisnukleationspartikeln und -moden für die Entstehung der Eisphase und Niederschlag: Modellsimulationen basierend auf Labormesssungen

In diesem Projekt sollen mit COSMO-SPECS, einem 3D-Wolkenmodell mit einer spektralen Beschreibung der wolken-mikrophysikalischen Prozesse von Hydrometeoren und Aerosolpartikeln, Modellsimulationen durchgeführt werden. Da dasselbe mikrophysikalische Schema in dem Luftpaketmodell enthalten ist, mit dem in INUIT-1 gearbeitet wurde, werden alle neuen Entwicklungen und Verbesserungen der Mikrophysik aus INUIT-1 direkt in COSMO-SPECS übertragen. Zunächst soll ein künstlicher Testfall simuliert werden, eine Wärmeblase über einem flachen Gelände. Sensitivitätsstudien sollen die Entwicklung der Eisphase und die Bildung von Niederschlag aufzeigen, wobei die Verteilung und die Typen der Eisnukleations-Partikel auf realistische Weise variiert werden. Ein anderer Schwerpunkt der Sensitivitätsstudien soll auf der Wirkung von sog. kleinen Triggern liegen, wie etwa Eisnukleations-Partikel oder Gefriermoden (z.B. biologische Partikel oder Kontaktgefrieren), die keine signifikanten Effekte hinsichtlich der Anzahl der entstehenden Eispartikel zeigen, aber doch die Dynamik der Wolke in einer Weise beeinflussen können, dass sich im Endeffekt die Eisbildung erhöht. Weiterhin ist in Zusammenarbeit mit INUIT RP5 eine Fallstudie geplant, die auf INUIT Feldexperimenten basiert. Hier sollen die Beiträge der verschiedenen eisbildenden Prozesse quantifiziert werden und dadurch die atmosphärische Relevanz der Eisbildungs-Regimes, wie sie in INUIT Labor- und Feldexperimenten untersucht werden, abgeschätzt werden. Gleichzeitig werden neue Parametrisierungen für Partikel, die während INUIT-2 untersucht werden, entwickelt und in das mikrophysikalische Schema eingebunden; vorhandene Parametrisierungen sollen weiter modifiziert und verbessert werden. Dieses Projekt schließt selbst auch Laborexperimente zum Kontakt- und Immersionsgefrieren ein, die am Mainzer vertikalen Windkanal und mit einer akustischen Tropfenfalle durchgeführt werden. Hier liegt der Schwerpunkt auf einer Verbesserung des Kontaktgefrierens. Die Experimente sollen am Mainzer vertikalen Windkanal durchgeführt werden, wobei unterkühlte Tropfen in einem Luftstrom, der die potentiellen Kontakteiskeime mit sich führt, frei ausgeschwebt werden. Auf diese Weise kann die Anzahl der Kollisionen zwischen Tropfen und Partikeln berechnet und die Gefriereffizienz, d.h. die Gefrierwahrscheinlichkeit für eine Tropfen-Partikel Kollision bestimmt werden.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Biogene Opalisotope - neue Proxies zur Untersuchung vergangener Nährstoffkreisläufe und hydrographischer Strukturen im Südpazifik in Beziehung zu der Entwicklung des Klimas und der antarktischen Kryosphäre

Der Verlauf der atmosphärischen CO2-Konzentrationen während der vergangenen Klimazyklen ist durch ein Sägezahnmuster mit Maxima in Warmzeiten und Minima in Kaltzeiten geprägt. Es besteht derzeit Konsens, dass insbesondere der Süd Ozean (SO) eine Schlüsselfunktion bei der Steuerung der CO2-Entwicklung einnimmt. Allerdings sind die dabei wirksamen Mechanismen, die in Zusammenhang mit Änderungen der Windmuster, Ozeanzirkulation, Stratifizierung der Wassersäule, Meereisausdehnung und biologischer Produktion stehen, noch nicht ausreichend bekannt. Daten zur Wirkung dieser Prozesse im Wechsel von Warm- und Kaltzeiten beziehen sich bislang fast ausschließlich auf den atlantischen SO. Um ein umfassendes Bild der Klimasteuerung durch den SO zu erhalten muss geklärt werden, wie weit sich die aus dem atlantischen SO bekannten Prozesswirkungen auf den pazifischen SO übertragen lassen. Dies ist deshalb von Bedeutung, da der pazifische SO den größten Teil des SO einnimmt. Darüber hinaus stellt er das hauptsächliche Abflussgebiet des Westantarktischen Eisschildes (WAIS) in den SO dar. Im Rahmen des Projektes sollen mit einer neu entwickelten Proxy-Methode Paläoumwelt-Zeitreihen an ausgewählten Sedimentkernen von latitudinalen Schnitten über den pazifischen SO hinweg gewonnen werden. Dabei handelt es sich um kombinierte Sauerstoff- und Siliziumisotopenmessungen an gereinigten Diatomeen und Radiolarien. Es sollen erstmalig die physikalischen Eigenschaften und Nährstoffbedingungen in verschiedenen Stockwerken des Oberflächenwassers aus verschiedenen Ablagerungsräumen und während unterschiedlicher Klimabedingungen beschrieben werden. Dies umfasst Bedingungen von kälter als heute (z.B. Letztes Glaziales Maximum) bis zu wärmer als heute (z.B. Marines Isotopen Stadium, MIS 5.5). Die Untersuchungen geben Hinweise zur (1) Sensitivität des antarktischen Ökosystems auf den Eintrag von Mikronährstoffen (Eisendüngung), (2) Oberflächenwasserstratifizierung und (3) 'Silicic-Acid leakage'-Hypothese, und tragen damit zur Überprüfung verschiedener Hypothesen zur Klimawirksamkeit von SO-Prozessen bei. Die neuen Proxies bilden überdies Oberflächen-Salzgehaltsanomalien ab, die Hinweise zur Stabilität des WAIS unter verschiedenen Klimabedingungen geben. Darüber hinaus kann die Hypothese getestet werden, nach der der WAIS während MIS 5.5 vollständig abgebaut war. Die Projektergebnisse sollen mit Simulationen mit einem kombinierten biogeochemischen (Si-Isotope beinhaltenden) Atmosphäre-Ozean-Zirkulations-Modell aus einem laufenden SPP1158-DFG Projekt an der CAU Kiel (PI B. Schneider) verglichen werden. Damit sollen die jeweiligen Beiträge der Ozeanzirkulation und der biologischen Produktion zum CO2-Austausch zwischen Ozean und Atmosphäre getrennt und statistisch analysiert werden. Informationen zu Staubeintrag, biogenen Flussraten, physikalischen Ozeanparametern und zur Erstellung von Altersmodellen stehen durch Zusammenarbeit mit anderen (inter)nationalen Projekten zur Verfügung.

Methodologies for dealing with uncertainties in landscape planning and related modeling; Uncertainty of predicted hydro-biogeochemical fluxes and trace gas emissions on the landscape scale under climate and land use change

Water, carbon and nitrogen are key elements in all ecosystem turnover processes and they are related to a variety of environmental problems, including eutrophication, greenhouse gas emissions or carbon sequestration. An in-depth knowledge of the interaction of water, carbon and nitrogen on the landscape scale is required to improve land use and management while at the same time mitigating environmental impact. This is even more important under the light of future climate and land use changes.In the frame of the proposal 'Uncertainty of predicted hydro-biogeochemical fluxes and trace gas emissions on the landscape scale under climate and land use change' we advocate the development of fully coupled, process-oriented models that explicitly simulate the dynamic interaction of water, carbon and nitrogen turnover processes on the landscape scale. We will use the Catchment Modelling Framework CMF, a modular toolbox to implement and test hypothesis of hydrologic behaviour and couple this to the biogeochemical LandscapeDNDC model, a process-based dynamic model for the simulation of greenhouse gas emissions from soils and their associated turnover processes.Due to the intrinsic complexity of the models in use, the predictive uncertainty of the coupled models is unknown. This predictive (global) uncertainty is composed of stochastic and structural components. Stochastic uncertainty results from errors in parameter estimation, poorly known initial states of the model, mismatching boundary conditions or inaccuracies in model input and validation data. Structural uncertainty is related to the flawed or simplified description of natural processes in a model.The objective of this proposal is therefore to quantify the global uncertainty of the coupled hydro-biogeochemical models and investigate the uncertainty chain from parameter uncertainty over forcing data uncertainty up the structural model uncertainty be setting up different combinations of CMF and LandscapeDNDC. A comprehensive work program has been developed structured in 4 work packages, that consist of (1) model set up, calibration and uncertainty assessment on site scale followed by (2) an application and uncertainty assessment of the coupled model structures on regional scale, (3) global change scenario analyses and finally (4) evaluating model results in an ensemble fashion.Last but not least, a further motivation of this proposal is to provide project results in a manner that they support planning and decision taking under uncertainty, as this proposal is part of the package proposal on 'Methodologies for dealing with uncertainties in landscape planning and related modelling'.

Establishment of Teak plantations for high-value timber production in Ghana

Background and Objectives: The project area is located in the Ashanti Region of Ghana / West Africa in the transition zone of the moist semideciduous forest and tropical savannah zone. Main land use in this region is subsistence agriculture with large fallow areas. As an alternative land-use, forest plantations are under development by the Ghanaian wood processing company DuPaul Wood Treatment Ltd. Labourers from the surrounding villages are employed as permanent or casual plantation workers. Within three forest plantation projects of approximately 6,000 ha, DuPaul offers an area of 164 ha (referred to as Papasi Plantation) - which is mainly planted with Teak (Tectona grandis) - for research purposes. In return, the company expects consultations to improve the management for sustainable timber and pole production with exotic and native tree species. Results: In a first research approach, the Papasi Plantation was assessed in terms of vegetation classification, timber resources (in qualitative and quantitative terms) and soil and site conditions. A permanent sampling plot system was established to enable long-term monitoring of stand dynamics including observation of stand response to silvicultural treatments. Site conditions are ideally suited for Teak and some stands show exceptionally good growth performances. However, poor weed management and a lack of fire control and silvicultural management led to high mortality and poor growth performance of some stands, resulting in relative low overall growth averages. In a second step, a social baseline study was carried out in the surrounding villages and identified landowner conflicts between some villagers and DuPaul, which could be one reason for the fire damages. However, the study also revealed a general interest for collaboration in agroforestry on DuPaul land on both sides. Thirdly, a silvicultural management concept was elaborated and an improved integration of the rural population into DuPaul's forest plantation projects is already initiated. If landowner conflicts can be solved, the development of forest plantations can contribute significantly to the economic income of rural households while environmental benefits provide long-term opportunities for sustainable development of the region. Funding: GTZ supported PPP-Measure, Foundation

1 2 3 4 546 47 48