API src

Found 3460 results.

Analyse und Nowcasting von konvektiven Systemen mit VERA

Die genaue Vorhersage von Gewittern ist sowohl für die Wissenschaft als auch für die Öffentlichkeit ein wichtiges Anliegen, da konvektive Ereignisse im Sommer zu den größten Naturgefahren in unseren Breiten gehören. Um die Entstehungsprozesse von Gewittern genauer zu verstehen, ist eine Untersuchung von Konvektion auf einer hoch auflösenden Skala nötig. Nur damit kann man den heutigen Anforderungen an die Vorhersage (in Bezug auf Zeit, Raum und Intensität) gerecht werden. Zu diesem Zweck wird im nächsten Jahr im Rahmen von zwei internationalen Projekten (COPS und MAP D-PHASE) im Süden von Deutschland eine groß angelegte Messkampagne durchgeführt. Das Hauptziel dieser Kampagne ist die Erstellung eines hochwertigen Datensatzes für die Untersuchung konvektiver Prozesse, von der Auslösung von Konvektion über die Wolken- und Niederschlagsbildung bis hin zur Untersuchung von Wolkenchemie und Hydrometeoren. Damit sollen meteorologische (und hydrologische) Vorhersagen für konvektive Ereignisse verbessert werden. Sowohl bei COPS (Convective and Orographically-induced Precipitation Study; Teil des Priority Program SSP 1167 der Deutschen Forschungsgemeinschaft) als auch bei MAP D-PHASE (Mesoscale Alpine Program Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region, ein von der Welt-Meteorologischen Organisation gefördertes Projekt) ist das Institut für Meteorologie und Geophysik in der Planungsphase vertreten. Im Rahmen des vorgeschlagenen Projektes soll die Messkampagne durch den Einsatz eines eigenen Meso-Messnetzes und Personal unterstützt werden, womit ein wichtiger Beitrag zu dem einmaligen Datensatz, der durch den Einsatz verschiedenster Messsysteme (Bodenstationen, Dopplerradar, Lidar, Satelliten, Flugzeuge, Radiosonden, ...) zu Stande kommt, geleistet wird. Mit Hilfe der Daten aus der Feldkampagne soll im Zuge des Projektes das Analyseverfahren VERA, das im Rahmen von FWF-Projekten am Institut entwickelt worden ist, einerseits für das Nowcasting von Gewittern, andererseits zur genaueren Niederschlagsanalyse, weiterentwickelt werden. Für beide Entwicklungsschritte wird dem Fingerprint-Ansatz, mit dem Zusatzinformation für das Downscaling meteorologischer Felder in die VERA-Analyse implementiert werden kann, eine wichtige Rolle zukommen. Dieser Ansatz wird für 3 Dimensionen, mehrere Fingerprints und höhere Auflösungen (bis 1km Gitterdistanz) erweitert. Mittels des Datensatzes werden neue Fingerprints entwickelt, die dazu beitragen werden, die Analysegenauigkeit für den Niederschlag und die Vorhersagbarkeit von Gewittern in Echtzeit mit Routinedaten zu verbessern. Das fertig entwickelte Analyseverfahren soll dann in einem weiteren Schritt zur Echtzeit-Validierung von hoch auflösenden Wettermodellen verwendet werden, wobei ein neuer Ansatz des Vergleiches zum Tragen kommt. Auch dadurch wird ein Beitrag zur besseren Vorhersagbarkeit von Gewittern geleistet.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Winkelabhängige Lichtstreuung atmosphärischer Eispartikel - Von Einzelpartikelmessungen zu einer globalen Beobachtung der Mikrophysik und Strahlungseigenschaften von Zirren

Im Rahmen dieses Projekts soll das Wolkenpartikelinstrument PHIPS-HALO des KIT um die Messung der winkelabhängigen Polarisation von einzelnen Eispartikeln im rückwärtigen Streuwinkelbereich erweitert werden. Diese Messung ergänzt die bestehenden PHIPS-HALO-Messmethoden zur Erfassung der Partikelform sowie der winkelabhängigen Streufunktion. Die neuen Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets des KIT werden in der Wolkensimulationskammer AIDA umfangreich getestet und charakterisiert, um diese am Ende der ersten Förderperiode für Messungen auf HALO zur Verfügung zu haben. Dadurch werden schon im Vorfeld der nächsten, für den Winter 2018/2019 geplanten Zirrusmission neuartige relevante Datensätze gewonnen, die von großem Nutzen für die Atmosphärenwissenschaft sein werden. Zusätzlich zu den Labormessungen, soll das verbesserte PHIPS-HALO Instrument sowie das PHIPS-HALO/SID-3 Instrumentpaket im Rahmen des Projekts auch auf anderen Messflugzeugen betrieben und getestet werden. Mit den erweiterten Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets können in zukünftigen HALO-Missionen Validierungen von Satellitenbeobachtungen durchgeführt werden, die sich auf Polarisationsmessmethoden stützen. Da diese Messmethoden sehr empfindlich auf die Komplexität der Form sowie der Oberflächenrauheit der Eispartikel sind, könnte auf Basis solcher Validierungsmissionen die Frage geklärt werden, ob die Eispartikelkomplexität eine dominante mikrophysikalische Eigenschaft von Zirren ist. Sollte dies der Fall sein, würden Wolkeneispartikel einen deutlich anderen Strahlungseinfluss auf den Wärmehaushalt der Erde haben als bisher angenommen.

Aufblasbare, individuell geformte, ressourcenschonende und konfektionierbare Hohlkammer-Matrizen für die Herstellung von Leichtbaufundamenten, Teilvorhaben: Herstellung optimierter Hohlkammermatrizen

Forschungsinitiative Zukunft Bau - Forschungscluster 'Energieeffizientes und klimagerechtes Bauen', Entwicklung einer Strategie zur Unterstützung des Energieeinsparverhaltens von Nutzern in Büro- und Verwaltungsgebäuden

Der Energieverbrauch in öffentlichen Gebäuden kann durch die Veränderung des Nutzerverhaltens um bis zu 40 Prozent gesenkt werden. Ziel des Forschungsprojekts ist es, Strategien zur Beeinflussung bzw. Optimierung des Energieeinsparverhaltens der Nutzerinnen und Nutzer in Bürogebäuden zu erarbeiten. Durch die direkte Einbindung der Beschäftigten sollen alltagstaugliche und leicht umsetzbare Strategien entwickelt und die praktische Anwendbarkeit dieser untersucht und in der Heizperiode 2018/2019 in einer Pilotphase umgesetzt werden. Ausgangslage: Um die Energieeffizienz von Büros und Bürogebäuden zu steigern, werden viele technische Lösungen entwickelt und angewandt. Die tatsächliche Wirksamkeit und Nachhaltigkeit dieser Maßnahmen entsprechen allerdings häufig nicht den Erwartungen. Insbesondere bei der Energieeffizienz in Bürogebäuden ist die tatsächlich erreichte Nachhaltigkeitsleistung technikzentrierter Effizienzmaßnahmen oft geringer als die vorhergesagte Leistung. Dies liegt vor allem daran, dass der Einfluss von Nutzerinnen und Nutzern auf den Gebäudebetrieb - etwa Angestellte, Gebäudeeigentümerinnen und -eigentümer, Gebäudemanagerinnen und -manager etc. - nicht beachtet wird. Alltägliche Verhaltensmuster und Routinen führen vielfach zu Rebound-Effekten, die Energie verbrauchen und damit Kosten verursachen. Studien zeigen, dass durch die gezielte Veränderung des Nutzerverhaltens ein wesentlicher Beitrag zur Reduktion des Energieverbrauchs und damit zum Erreichen der Klimaziele in Bürogebäuden geleistet werden kann. Ziel: Ziel des Forschungsprojekts ist es, Strategien zur Beeinflussung und Optimierung des Energieeinsparverhaltens von Nutzerinnen und Nutzern in Büro- und Verwaltungsgebäuden zu erarbeiten. Mithilfe sozialempirischer Methoden werden mögliche Strategien zur Unterstützung des Energieeinsparverhaltens eruiert, wobei die Nutzerakzeptanz und eine dauerhafte intrinsische Motivation im Fokus der Betrachtung stehen. Das Monitoring des Raumklimas in den Büros ermöglicht zudem die Validierung der Strategien anhand quantitativer Indikatoren. Die entwickelten Strategien sollen weiterhin auf ihre praktische Anwendbarkeit geprüft sowie in der Heizperiode 2018/2019 in einer Pilotphase umgesetzt werden. Abschließend soll eine Potenzialabschätzung der verschiedenen Strategien vorgenommen werden.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung

Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.

Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie

Zwischenabfluss (ZA) ist ein bedeutender Abflussbildungsprozess in gebirgigen Einzugsgebieten der feucht-gemäßigten Klimazonen. Obwohl ZA bereits seit den 1970er Jahren intensiv untersucht wird, ist es ein noch immer schwer zu erfassender Prozess in der Einzugsgebietshydrologie. Es ist unklar, welche wesentlichen Faktoren dessen räumliche und zeitliche Verteilung steuern und wie dieser Prozess in Niederschlag-Abfluss-Modellen parametrisiert werden kann. Um diese Forschungslücke zu schließen, wird das wissenschaftliche Netzwerk, Zwischenabfluss: Ein anerkannter, aber immer noch schwer zu erfassender Prozess in der Einzugsgebietshydrologie, gegründet, in dem aktuelle Probleme zur1) Identifizierung maßgeblicher Einflussfaktoren des ZA,2) Parametrisierung des ZA in N-A-Modellen sowie3) zu bestehenden Ansätze der Kalibrierung und Validierung des ZA diskutiert werden. Das Netzwerk setzt sich aus den Nachwuchswissenschaftler/innen Sophie Bachmair, Theresa Blume, Katja Heller, Luisa Hopp, Ute Wollschläger, Thomas Graeff, Oliver Gronz, Andreas Hartmann, Bernhard Kohl, Christian Reinhardt-Imjela, Martin Reiss, Michael Rinderer und Peter Chifflard (PI) zusammen. Sie werden die genannten Probleme kritisch reflektieren und Forschungsdefizite als Basis für ein gemeinsames Forschungsprojekt erarbeiten, das als Forschergruppe realisiert und bei der Deutschen Forschungsgemeinschaft eingereicht wird. Das Arbeitsprogramm des Netzwerkes wird in insgesamt 6 Workshops umgesetzt, die jeweils etwa 3 Tage dauern und als moderierte, problemlösungsorientierte Workshops organisiert sind. Spezifische Fragestellungen werden zuerst in Kleingruppen erörtert und anschließend in der gesamten Gruppe diskutiert und dokumentiert. Das Ziel eines jeden Workshops ist die Erarbeitung von Hypothesen, die die Grundlage des Forschungsantrages darstellen. In den ersten vier Workshops werden die Themen 1) Zwischenabfluss: Warum? Wann? Wo? 2)Identifizierung maßgeblicher Einflussfaktoren, 3) (Boden-) hydrologische Modellkonzepte und 4) Kalibrierungs- und Validierungsansätze bearbeitet. Die international ausgezeichneten Wissenschaftler/innen Nicola Fohrer, Ilja van Meerveld, Doerthe Tetzlaff, Axel Bronstert, Olaf Kolditz, Gunnar Lischeid, Brian McGlynn und Markus Weiler nehmen an den ersten vier Workshops als Gäste teil und tragen zu den Diskussionen und der Hypothesenbildung bei. Im fünften und sechsten Workshop wird eine Projektskizze, die zur Beantragung einer Forschergruppe bei der DFG notwendig ist, verfasst und fertiggestellt. Die insgesamt sechs Workshops werden durch wissenschaftliche Exkursionen in experimentelle Untersuchungsgebiete, in denen der ZA ein maßgebende Prozess ist, ergänzt und an den Instituten der Mitglieder des Netzwerkes durchgeführt: Universitäten Marburg, Trier, Dresden, Durham (USA), UFZ Leipzig und BfW Innsbruck. Dadurch bestehen zusätzliche Kooperationen mit M. Casper, J. Fleckenstein, A. Kleber, G. Markart,F. Reinstorf, H.-J. Vogel, H. Zepp, und E. Zehe.

Daily HUME: Daily Homogenization, Uncertainty Measures and Extremes (Homogenisierung täglicher Daten, Fehlermaße und Extreme)

Global change not only affects the long-term mean temperature, but may also lead to further changes in the frequency distribution and especially in their tails. The study of the whole frequency distribution is important as, e.g., heat and cold waves are responsible for a considerable part of morbidity and mortality due to meteorological events. Daily datasets are essential for studying such extremes of weather and climate and therefore the basis for political decisions with enormous socio-economic consequences. Reliably assessing such changes requires homogeneous observational data of high quality. Unfortunately, however, the measurement record contains many non-climatic changes, e.g. homogeneities due to relocations, new weather screens or instruments. Such changes affect not only the means, but the whole frequency distribution. To increase the quality and reliability of global daily temperature records, we propose to develop an automatic homogenisation method for daily temperature data that corrects the frequency distribution. We propose to describe homogenisation as an optimisation problem and solve it using a genetic algorithm. In this way, entire temperature networks can be homogenised simultaneously leading to an increase in sensitivity, while avoiding setting false (spurious) breaks. By not homogenising the daily data directly, but by homogenising monthly indices (probably the monthly moments), the full power and understanding of monthly homogenization methods can be carried over to the homogenisation of daily data. Furthermore, in an optimisation framework, the optimal temporal correction scale can be determined objectively and straightforwardly, that is whether the corrections are best applied annually (all twelve months get the same correction), semi-annually, seasonally or monthly. All three aspects are new: the simultaneous homogenisation of an entire network, the objective selection of the degrees of freedom of the adjustments and of the temporal averaging scale of the correction model. This new method will be applied to homogenise the temperature datasets of the International Surface Temperature Initiative. This large dataset necessitates an automatic homogenisation method. To validate the method, we will generate an artificial climate dataset with known inhomogeneities. To be able to generate such a validation dataset with realistic inhomogeneities, we need to understand the nature of inhomogeneities in daily data much better. Therefore, we intend to collect and study parallel measurements (two set-ups at one location), which allow us to study the changes in the frequency distribution if one set-up is replaced by the other. Finally, we will study and quantify the uncertainties due to persistent errors remaining in the dataset after homogenisation and utilise this to improve the accuracy of the homogenisation algorithm. The knowledge of uncertainties is also indispensable for climatologists using the homogenised data.

Computergestützter Ansatz zur Kalibrierung und Validierung mathematischer Modelle für Strömungen im Untergrund - COMPU-FLOW

Vorhersagen im Untergrund (z.B. Grundwasserströmung oder Schadstofftransport) leiden unter hohen Unsicherheiten. Diese entstehen vor allem durch die Heterogenität von geologischen Materialien, die unmöglich im Detail erfasst werden kann. Die Auflösung der Struktur kann jedoch durch neue Arten von Daten verbessert und die verbleibende Unsicherheit verringert werden, indem Strömungs- und Transportmodelle auf gemessene Werte von Zustandsvariablen kalibriert werden. Um die verbleibende Unsicherheit zu quantifizieren, müssen stochastisch-inverse Techniken anstelle konventioneller Kalibrierungsmethoden verwendet werden. Tatsächlich gibt es viele verschiedene (stochastisch-)inverse Methoden in der Literatur. Jedoch fehlt bislang eine schlüssige und überzeugende Gegenüberstellung ihrer gegenseitigen Vor- und Nachteile, und dies behindert massiv die aktuelle Forschung an verbesserten inversen Methoden. Vor Allem fehlen wohldefinierte Benchmark-Szenarios für Vergleiche unter standardisierten, kontrollierten und reproduzierbaren Bedingungen. Das beantragte Projekt wird dieses Problem lösen indem eine Auswahl an Benchmarks mit hochakkuraten Referenzlösungen erstellt wird. Darauf aufbauend wird eine gemeinschaftliche Vergleichsstudie durchgeführt. Die Benchmarks, Referenzlösungen und Vergleichslösungen werden öffentlich langfristig zur Verfügung gestellt, um auch jenseits des beantragten Projekts eingesetzt zu werden. Die Benchmarks erstrecken sich auf vollgesättigte, transiente Grundwasserströmung, schwache und starke Heterogenität sowie multi-Gauß'sche und nicht-multi-Gauß'sche Strukturtypen. Besonderes Augenmerk liegt auf der Genauigkeit der Referenzlösungen. Diese werden mit spezialisiert weiterentwickelten Versionen des 'preconditioned Crank-Nicholson Markov Chain Monte Carlo' erstellt, ausgerüstet mit adaptiven Sprungverteilungen, multi-temperierten parallelen Ketten, stochastischen Gradientensuchen und Erweiterungen für nicht-multi-Gauß'sche Fälle. Die Algorithmen werden zum hochparallelisierten Einsatz auf den Großrechenanlagen in Jülich angepasst. Die Community der inversen Modellierung wird über einen Workshop eingebunden, in dem die genaue Strategie, Kriterien und Logistik für die Vergleichsstudie festgesetzt werden. Weltweit haben bereits 12 namhafte Forschungsgruppen zugesagt, am Workshop und an der Vergleichsstudie teilzunehmen. Insgesamt ist dieser Antrag eine einzigartige Initiative, um die internationale Community der inversen Grundwassermodellierung zusammenzubringen, wichtige Erkenntnisse zu gewinnen und inverse Methoden weiter zu verbessern.

Quantifizierung der Gerinnespeicherung von kohäsiven Feinpartikeln im Verlauf von künstlich erzeugten Hochwasserwellen und stationären Trockenwetterrandbedingungen

Kohäsive Feinpartikel sind potentielle Träger von anorganischen und organischen Schadstoffen und spielen eine entscheidende Rolle beim Stoffaustausch zwischen Wasserkörper, Schwebstoff und Sediment. Daher ist die Kenntnis der Depositionsdynamik dieser Feinpartikel ein wichtiger Baustein für ein effizientes Sedimentmanagement und eine physikalisch basierte Modellierung des Schadstofftransfers in Fließgewässern. Es überrascht jedoch, dass sich Untersuchungen zum Transport- und Sedimentationsverhalten kohäsiver Partikel bisher häufig auf definierte stationäre Randbedingungen im Labormaßstab und Trockenwetterbedingungen im Gelände konzentrieren. Weitgehend ungeklärt ist hingegen das Verhalten von Feinpartikeln und deren Speicherung im Gerinnebett während der dynamischen Phase von Hochwasserereignissen. Um die im Gerinne ablaufenden Prozesse weitgehend unabhängig von den Einzugsgebietsprozessen zu untersuchen hat sich in unserer Arbeitsgruppe seit nunmehr über 10 Jahren ein Ansatz mit künstlich generierten Hochwasserwellen bewährt. Es ist ein genereller Vorteil von solchen Geländeexperimenten, dass einzelne steuernde Größen ausgeschlossen oder gezielt kontrolliert werden können. Außerdem ist ein solcher Ansatz eine Voraussetzung, um die Aussagekraft experimentell gewonnener Laborergebnisse zur potentiell hohen Feinpartikel-Retention in Sand- und Kiessedimenten in einem natürlichen System zu validieren. Das übergeordnete Ziel des hier beantragten Projekts ist es, die Gerinnespeicherung kohäsiver Feinpartikel in einem natürlichen System bei variierenden hydrologisch-hydraulischen Randbedingungen zu quantifizieren. Zu diesem Zweck werden standardisierte Feinpartikeltracer (Kaolinit, d50 = 2ìm, ñ = 2,6 g/cm3) sowohl im Verlauf von künstlich generierten Hochwasserwellen als auch während stationärer Trockenwetterbedingungen in einen Mittelgebirgsbach induziert. Die Retention und Sedimentation der eingegebenen Feinpartikel wird gezielt in kleinräumig variierenden Flussbettstrukturen (Hyporheische Zone, Stillwasserzonen, Gerinnerandbereiche, Riffle-Pool-Sequenzen) und für einzelne Gerinneabschnitte erfasst. Die Quantifizierung der Speicherung erfolgt mit bereits erprobten Resuspensionstechniken und Sedimentfallen sowie einer in Pilotprojekten erfolgreich getesteten Tracerfrachtberechnung mittels FTIR-DRIFT Spektroskopie an mehreren Basismessstationen im Längsprofil. In einem interdisziplinären Forscherverbund mit Kollegen des 'Hydraulics Laboratory' und des 'Dept. of Civil Engineering' der Universität Gent, der 'Ecosystem Management Research Group, Dept. of Biology' der Universität Antwerpen und des 'Dept. of Hydrology and Hydraulic Engineering' der Freien Universität Brüssel in Belgien wird darüber hinaus die Transport- und Speicherdynamik der Feinpartikel mit der neuen, FORTRAN basierten Modellierungssoftware 'FEMME' ('Flexible Environment for Mathematically Modelling the Environment') abgebildet.

Skalenübergreifende Analyse von Dürreeffekten auf ökohydrologische Prozessdynamiken im Grünland durch stabile Isotopenanalyse

Hydrologische Extremereignisse wie von Klimawandelprognosen vorhergesagte Dürreperioden beeinflussen ökologische Prozesse, Struktur und Resistenz terrestrischer Pflanzengemeinschaften. Davon sind insbesondere flachwurzelnde Gemeinschaften wie Grünland betroffen. Die Interaktionen zwischen strukturellen Änderungen dieser Pflanzengemeinschaften und zugrundeliegenden mechanistischen ökohydrologischen Reaktionen hinsichtlich Wassernutzung oder Kohlenstoffaufnahme auf solche Dürreereignisse sind jedoch lückenhaft und schwer quantifizierbar. Eine Vielzahl von stark dynamischen Prozessen spielt hierbei eine Rolle, welche sich auf den verschiedenen Ebenen, von der Einzelpflanze bis zu ganzen Pflanzengemeinschaften, auswirken. Die Pflanzentranspiration, beispielsweise, wird durch Bodenwasserverfügbarkeit und der stomatären Regulation des Transpirationsverlustes kontrolliert; dabei sind beide Prozesse, die Nutzung verschiedener Bodenwasserquellen und die stomatäre Empfindlichkeit gegenüber Dürre, stark Art abhängig. Stabile H2O und CO2 Isotope sind dabei aufschlussreiche Indikatoren für die Prozesse des Boden-Vegetation-Atmosphäre-Kontinuums, insbesondere durch neuartige technische Entwicklungen, welche nahezu kontinuierliche Beobachtungen ermöglichen. Das Ziel dieses Projektes ist die ganzheitliche mechanistische Analyse ökohydrologischer Reaktionen auf ausgedehnte Dürreperioden anhand H2O und CO2 Fluss- und Isotopenmessungen. Dabei wird eine Verknüpfung dieser Prozesse mit Reaktionen der Artengemeinschaften hinsichtlich Struktur und Biomasseproduktion angestrebt. In drei zusammengreifenden Arbeitspaketen (AP) werden diese Aspekte skalenübergreifend von der Einzelpflanzen- bis zur Bestandes-Ebene untersucht. Der Fokus von AP1 liegt dabei auf plastischen Reaktionen der Einzelpflanze hinsichtlich Wurzelwasseraufnahme (WWA) sowie Verschiebungen des Pflanzen-Pflanzen-Interaktionsgleichgewichts unter Laborbedingungen. In AP2 werden die Rückkopplungen struktureller Veränderungen auf Gemeinschaftsebene und WWA Profilen und Nettoökosystemflüssen von H2O und CO2 (aufgeteilt in Transpiration und Bodenverdunstung und Kohlenstoffaufnahme und Atmung) untersucht. Dies erfolgt innerhalb eines 2-jährigen Niederschlagsmanipulations-experimentes im Freiland. AP3 fokussiert sich auf die Integration der in AP1 und 2 gewonnenen Informationen mittels Modellierung. Die in AP1 gewonnenen Informationen werden zur Validierung des dreidimensionalen Boden-Wurzel-Models (R-SWMS) genutzt, welches neue Module für Wurzelwachstum, WWA, und Transpiration für das Boden-Vegetations-Atmosphären-Transfer Model SiSPAT-Isotope generieren wird. Simulationen mit SiSPAT-Isotope basierend auf den in AP2 gewonnenen Daten dienen zur quantitativen Abschätzung der hydrologischen Antwort auf Dürreperioden, welches bei der Entwicklung von Nachhaltigkeitsvorhersagen für die Einflüsse des Klimawandels auf Grünlandgemeinschaften helfen wird.

1 2 3 4 5344 345 346