API src

Found 535 results.

Similar terms

s/wateravailability/water availability/gi

Eine nachhaltige Nutzung der globalen hydrologischen Modellierungssoftware WaterGAP

WaterGAP ist eine globale hydrologische Simulationssoftware zur Berechnung von Wasserflüssen und -speicherung auf allen Kontinenten der Erde. Sie wird verwendet, um Wasserverfügbarkeit und Wasserstress für Menschen und andere Biota weltweit zu bestimmen. In zahlreichen Studien wurde WaterGAP genutzt, um z.B. den Einfluss des Klimawandels auf Bewässerungsbedarf, ökologisch relevante Durchflusscharakteristika, Grundwasserneubildung und auf Wasserressourcen im Allgemeinen zu erforschen. Resultate aus diesen Studien sind in IPCC-Berichte eingegangen. WaterGAP nimmt unter den hydrologischen Modellen weltweit eine Führungsrolle ein. Allerdings wurde die Software über mehr als 20 Jahre von mehreren Doktoranden und Postdocs verändert und befindet noch sich immer in einem Prototypstadium. Die Software wurde nie grundlegend überarbeitet oder auf Grundlage einer sorgfältig geplanten Software-Architektur entwickelt. Es handelt sich eher um eine Ansammlung von Dateien mit jeweils fast 10.000 Code-Zeilen, ohne eine konsequente Modularisierung. Es ist es uns daher aktuell nicht möglich, die Software anderen Forschern zur Verfügung zu stellen, damit sie Ergebnisse replizieren und verstehen können oder die Software für eigene Forschung zu erweitern. Auch Modellveränderungen und Erweiterungen durch unsere beiden Gruppen sind herausfordernd und kosten Zeit. Gerade wegen der wichtigen Forschungsergebnisse bezüglich der Beurteilung und Projektion von globalen Wasserressourcen wäre eine Replikation der Ergebnisse durch Dritte unbedingt notwendig, was eine deutliche Verbesserung der Softwarequalität voraussetzt. Projektziel ist es. die Forschungssoftware in einer modernen Programmiersprache neu zuschreiben und ausführlich zu dokumentieren. Zudem soll die räumliche Auflösung flexibel anpassbar sein. Die resultierende Software soll testbar, wartbar, erweiterbar und durch Dritte nutzbar und erweiterbar sowie gründlich getestet sein. Die Neuentwicklung wird mit einem angepassten Scrum-Prozess durchgeführt und die Planung der Software Architektur wird auf Grundlage des IEEE 1016-2009 Dokuments erstellt. Mehrere Methoden werden genutzt um nachhaltig die Qualität der Software intern und externe zu steuern. Dieses Projekt wird anderen Forschern erlauben unser globales hydrologisches Modell selbst auszuführen, Ergebnisse zu replizieren oder die Einflüsse von Modifikationen in den Eingabedaten und Algorithmen zu untersuchen. Die Forschergemeinschaft kann so algorithmische Ansätze vergleichen, unserer Ergebnisse überprüfen und auch Fehler in unserer Software identifizieren. Um die Berichterstattung und Zusammenarbeit so einfach wie möglich zu gestalten setzen wir auf die etablierte Plattform github. Auch werden wir von automatisierten Tests und Benchmarkszenarien Gebrauch machen. Dies wird nicht nur dazu beitragen die Forschungssoftware WaterGAP effizienter zu nutzen und wissenschaftliche Ergebnisse robuster machen, sondern auch den wissenschaftlichen Fortschritt beschleunigen.

Mittlerer potenzieller Bodenwasservorrat in der Vegetationsperiode für den 10-jährigen Zeitraum 2001-2010

Die Karte zeigt den mittleren potentiellen Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für die Dekade 2001-2010 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.

Multivariate Analyse von Land-Atmosphäre Wechselwirkungen in einem veränderlichen Klima

Die Hydrologie der Landoberfläche wirkt an der Schnittstelle zwischen Boden, Vegetation und Atmosphäre. Sie hat dadurch Auswirkungen auf Nahrungsmittelproduktion, Wasserverfügbarkeit und Extremereignisse, wie Dürren und Überschwemmungen. Die Wechselwirkungen zwischen Land (Hydrologie) und Atmosphäre (Wetter) sind bisher nur ungenügend verstanden. Es ist insbesondere unklar, ob sich die Einflüsse der Landoberfläche auf Vegetation und Wetter durch die globale Erwärmung verstärken werden. Darüber hinaus ist nur wenig bekannt bezüglich des Übergangs von einem energielimitierten Regime, wo die Atmosphäre (Temperatur und Einstrahlung) das Land (Vegetationsproduktivität, Bodenfeuchte) beeinflusst, hin zu einem wasserlimitierten Regime, wo das Land (auch) die Atmosphäre beeinflusst. Um das Verständnis der Land-Atmosphäre-Wechselwirkungen zu verbessern, wird ein multivariater Ansatz mit der Analyse von Daten über Bodenfeuchte, Matrixpotential, Bruttoprimärproduktion, Verdunstung, Temperatur und Landoberflächencharakteristiken vorgeschlagen. Mit dieser umfassenden Methodik werden Land-Atmosphäre-Wechselwirkungen in Bezug auf ihre kurz- und langfristige Variabilität, sowie auf ihre Veränderungen im Kontext des Klimawandels untersucht. Ausserdem werden potentiell stark betroffene Regionen bestimmt. Desweiteren wird ein kritischer Bereich der Bodenfeuchte und/oder des Matrixpotentials identifiziert und charakterisiert, ab dem eine Wasserlimitierung von Vegetation oder Evapotranspiration auftritt. Ein Ergebnis dieser Analyse wird die Identifizierung eines dritten charakteristischen Matrixpotentials neben dem permanenten Welkepunkt und der Feldkapazität sein. Als Grundlage für diese Untersuchungen wird mittels eines Landoberflächenmodells von geeigneter Komplexität ein langfristiger, qualitativ hochwertiger hydrologischer Datensatz berechnet, welcher anhand von multivariaten Beobachtungen kalibriert wird. Dabei werden auch die Unsicherheiten des Datensatzes, sowie der multivariaten Beobachtungen, thematisiert. Die Resultate dieser Arbeit können helfen das Management von Wasserressourcen zu verbessern. Beispielsweise können Prognosen des Matrixpotentials in Verbindung mit dem identifizierten kritischen Bereich für eine intelligente Bewässerung von Pflanzen und Feldern verwendet werden. Eine Analyse von langfristigen Trends in Matrixpotential-, Bodenfeuchte- und Abflussdaten kann als Grundlage für langfristige Anpassungsmaßnahmen dienen. In einer weiteren Analyse werden Größenordnungen und Auftrittshäufigkeiten von Extremereignissen, wie Dürren und Überschwemmungen untersucht und in Verbindung mit entstandenen Sach- und Personenschäden gebracht. Diese Arbeit trägt zu den Millenniums-Entwicklungszielen der Vereinten Nationen bezüglich der Bekämpfung von Hunger und einer nachhaltigeren Wassernutzung, den 'Europa 2020' Zielen der EU Kommission bezüglich nachhaltiger Energienutzung, und zum 'grand challenge' Wasserverfügbarkeit des Weltklimaforschungsprogramms bei.

Trockenheitsrisiken im Wald unter Klimawandel, Teilvorhaben 2: Ableitung von trockenstress-bedingten abiotischen und baumartenspezifischen Schadpotentialen (Vitalität, Wachstum und Mortalität) auf Basis von Wasserhaushaltsindikatoren und deutschlandweiter Monitoring- und Inventurdaten

Die Sommertrockenheit in den Jahren 2003, 2013, 2015, 2018 und 2019 verdeutlichen, dass die Häufung und Intensität katastrophaler Trockenheitsereignisse durch den Klimawandel wahrscheinlich deutlich ansteigen werden. Zur deutschlandweiten Echtzeitbewertung der Wasserverfügbarkeit und von Dürrerisiken in Waldflächen soll im Rahmen des Projektes TroWaK ein hochaufgelöstes Wasserhaushaltsmodell entwickelt werden. Die Ergebnisse des Wasserhaushaltsmodells bilden die Grundlage für neue Methoden zur Abschätzung des Risikos für abiotische und biotische Folgeschäden in trockenheitsbeeinflussten Wäldern. Das Thünen-Institut arbeitet gemeinsam mit der NW-FVA und dem DWD an der Weiterentwicklung und Parametrisierung des Modells LWF-Brook90 (Wasserhaushaltsmodell) für verschiedene Baumarten. Hierfür werden Forstliche Monitoring- und Inventurdaten genutzt. Mit den Wasserhaushaltsmodellierungen werden baumspezifische abiotische Stressfaktoren abgeleitet. Diese reichen von Wachstums- über Vitalitätseinbußen, bis zur Mortalität. Damit wird zur Erstellung routinemäßiger Karten zur aktuellen Bodenfeuchtesituation und zum aktuellem Schadensrisiko von Waldbeständen beigetragen. Deutschlandweit kann so eine einheitliche Bewertung der Risiken für Waldbestände in Abhängigkeit von Klima, Baumartenzusammensetzung und Boden erfolgen. Aus den Ergebnissen sollen deutschlandweit einheitliche forstliche Standortskarten abgeleitet werden.

Messsystem mit plasmonischem Sensor für die Vor-Ort-Analyse der E. coli-Belastung für die Wasserwiederverwendung, Teilvorhaben: Anwendungsbedingungen und praktische Erprobung des E. coli-Sensors für Zwecke der Wasserwiederverwendung und weiterer Anwendungsfelder

Mittlerer potenzieller Bodenwasservorrat in der Vegetationsperioden für 2020

Die Karte zeigt den mittleren potentiellen Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für das Jahr 2020 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.

Mittlerer potenzieller Bodenwasservorrat in der Vegetationsperiode für den 30-jährigen Zeitraum 1981-2010

Die Karte zeigt den mittleren Bodenwasservorrat (in %nFK) in der Vegetationsperiode (April – September) für den 30-jährigen Zeitraum 1981-2010 berechnet mit dem Bodenwasserhaushaltsmodell BOWAB (für 0 – 60 cm). Für die Pflanzen ist die Wasserverfügbarkeit im Boden ein zentrales Element für das Wachstum. Diese Verfügbarkeit von Bodenwasser hängt von der Bodenart und der Menge des im Boden gespeicherten Wassers ab. Wobei letztere maßgeblich vom Niederschlag und der Temperatur (bzw. Verdunstung) beeinflusst wird. Das für Pflanzen nutzbare Bodenwasser wird als Prozent der nutzbaren Feldkapazität (%nFK) angegeben. Ein Wert von 100% nFK oder mehr bedeutet die Speicherfähigkeit des Bodens für pflanzenverfügbares Wasser erreicht ist. Ab etwa 40 % nFK wird eine Beregnung von Ackerkulturen empfohlen, um einen optimalen Ertrag erzielen zu können.

Klimaangepasstes Wassermanagement (KliWa) aus traditionellen Nutzungen für die Zukunft lernen

Zielsetzung: Die letzten Jahre haben gezeigt, dass wir lernen müssen, Wasser nachhaltiger zu managen und mehr Wasser in der Landschaft zu halten. Vermehrt treten Extremwetterereignisse auf, etwa lange Trockenperioden einerseits sowie Starkniederschläge und Überschwemmungen andererseits. Das sich ändernde Klima führt uns vor Augen, dass Wasser in der Landschaft ein Schlüsselfaktor für die landwirtschaftliche Produktion und den Erhalt von Ökosystemen ist. Herkömmliche Methoden der landwirtschaftlichen Bewässerung kommen allein wegen der Wasserverfügbarkeit an ihre Grenzen. Daher müssen neben technischen (z. B. Zwischenspeicher) auch natürliche Maßnahmen zum Wasserrückhalt umgesetzt werden. Die traditionellen Techniken der Wiesenbewässerungen sind hervorragend dafür geeignet. Durch verzweigte, dem Gelände angepasste Grabensysteme wird Wasser aus einem Fluss über Bewässerungsgräben in die Wiesenfläche geleitet. Unterschiedliche Bewässerungssysteme fluten oder überrieseln die Wiesen durch gezieltes Stauen des Wassers. Ein Teil des Wassers wird anschließend wieder in den Fluss zurückgeleitet. Die Vorteile des Wiesenbewässerung sind mannigfaltig: Sie steigert den Ertrag, trägt zur Bodenbildung bei, bindet Kohlenstoff effektiver als trockene Böden, bietet Lebensraum für feuchteliebende Tier- und Pflanzenarten, puffert Hochwasser- und Starkregenereignisse ab, fördert die Grundwasserneubildung und stellt kühlende Frischluftschneisen für angrenzende Wohngebiete dar. Übergeordnetes Projektziel ist es, die Techniken der fast in Vergessenheit geratenen Bewirtschaftungsform der traditionellen Wiesenbewässerung zu nutzen, um mehr Wasser länger in der Landschaft zu halten. Die Vernetzung des vorhandenen Wissens zu traditioneller Bewässerung und weiteren Methoden des natürlichen Wasserrückhalts sollen neue Anstöße und Lösungsansätze für aktuelle Herausforderungen in unseren Landschaften geben. Darüber hinaus werden bestehende und neue Initiativen zu Fördermöglichkeiten und Projektentwicklung beraten und mit relevanten Kontaktpersonen und Institutionen vernetzt, um neue Projekte zur Verbesserung des natürlichen Wasserrückhalts zu initiieren.

Trockenheitsrisiken im Wald unter Klimawandel, Teilvorhaben 3: Biotische Waldschadensmodellierung

Die Sommertrockenheit in den Jahren 2003, 2013, 2015, 2018 und 2019 verdeutlichen, dass die Häufung und Intensität katastrophaler Trockenheitsereignisse durch den Klimawandel wahrscheinlich deutlich ansteigen werden. Zur deutschlandweiten Echtzeitbewertung der Wasserverfügbarkeit und von Dürrerisiken in Waldflächen soll im Rahmen des Projektes TroWaK ein hochaufgelöstes Wasserhaushaltsmodell entwickelt werden. Die Ergebnisse des Wasserhaushaltsmodells bilden die Grundlage für neue Methoden zur Abschätzung des Risikos für abiotische und biotische Folgeschäden in trockenheitsbeeinflussten Wäldern. Das JKI wird eng mit der NW-FVA zusammenarbeiten, um die wichtigsten Schaderreger und Krankheiten zu identifizieren, auf die sich das Projekt konzentrieren soll. Mit den Daten des baumartenspezifisch angepassten Wasserhaushaltsmodells LWF-Brook90 und dem für Waldbestände angepassten Kronendach-Klimamodell BEKLIMA stehen im Rahmen des Projektes realistische klimatische, topographische und standörtliche Bedingungen zur Verfügung, um die Faktoren zu untersuchen, die für das Auftreten von Schädlingen und Krankheiten eine zentrale Rolle spielen. Ein besonderer Schwerpunkt ist die Untersuchung und Identifizierung der ursächlichen Parameter des Buchensterbens. Anhand der Datenanalyse und der entwickelten vorläufigen Modelle können kurzfristige Risiken für Schädlings- und Krankheitsbefall in Waldbeständen prognostiziert werden. Damit werden die Weichen für die weitere Entwicklung anwendungsorientierter Modelle und Instrumente gestellt, um die Auswirkungen trockenheitsbedingter biotischer Gefahren in Wäldern zu verhindern und/oder zu mildern.

Trockenheitsrisiken im Wald unter Klimawandel

Die Sommertrockenheit in den Jahren 2003, 2013, 2015, 2018 und 2019 verdeutlichen, dass die Häufung und Intensität katastrophaler Trockenheitsereignisse durch den Klimawandel wahrscheinlich deutlich ansteigen werden. Zur deutschlandweiten Echtzeitbewertung der Wasserverfügbarkeit und von Dürrerisiken in Waldflächen soll im Rahmen des Projektes TroWaK ein hochaufgelöstes Wasserhaushaltsmodell entwickelt werden. Die Ergebnisse des Wasserhaushaltsmodells bilden die Grundlage für neue Methoden zur Abschätzung des Risikos für abiotische und biotische Folgeschäden in trockenheitsbeeinflussten Wäldern. Der DWD arbeitet gemeinsam mit der NW-FVA und dem Thünen-Institut für Waldökosysteme an der Weiterentwicklung und Parametrisierung des Modells LWF-Brook90 (Wasserhaushaltsmodell) für verschiedene Baumarten. Die Ergebnisse des bereits laufenden WKF-Projektes 'WBI_Praxis' zur Waldverdunstung und zur Streufeuchte sollen bei der Weiterentwicklung mit einbezogen werden. Das bestehende Bestandesklimamodell BEKLIMA wird für Waldbestände angepasst und soll zusätzliche Parameter berechnen, die für die Modelle der Projektpartner (verbessertes LWF-Brook90, Schädlinge, Krankheiten) benötigt werden. Die Daten der Level II-Stationen dienen zur Parametrisierung und zur späteren Validierung der Modelle. Als Ergebnis sollen zukünftig routinemäßig Karten zur aktuellen Bodenfeuchtesituation und zum aktuellem Schadensrisiko von Waldbeständen online bereitgestellt werden. Deutschlandweit kann so eine einheitliche Bewertung der Risiken für Waldbestände in Abhängigkeit von Klima, Baumartenzusammensetzung und Boden erfolgen.

1 2 3 4 552 53 54