Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
The Tropical Glaciology Group's research on Kilimanjaro started in 2002 and is in progress. Central aspects of our research plan are: 1) Development of the working hypothesis: From a synopsis of (i) proxy data indicating changes in East African climate since ca. 1850, (ii) 20th century instrumental data (temperature and precipitation), and (iii) the observations and interpretations made during two periods of fieldwork (June 2001 and July 2002) a scenario of modern glacier retreat on Kibo is reconstructed. This scenario offers the working hypothesis for our project. 2) Impact of local climate on the glaciers: This goal involves micrometeorological measurements on the glaciers, and the application of collected data to full glacier energy and mass balance models. These models quantify the impact of local climate on a glacier, based on pure physical system knowledge. Our models are validated by measured mass loss and surface temperature. 3) Latest Extent of the Kilimanjaro glaciers: Here, a satellite image was analyzed to derive the surface area and spatial distribution of glaciers on Kilimanjaro in February 2003. To validate this approach, an aerial flight was conducted in July 2005. 4) Linking local climate to large-scale circulation: As glacier behavior on Kilimanjaro, a totally free-standing mountain, is likely to reflect changes in larger-scale climate, this goal explores the large-scale climate mechanisms driving local Kilimanjaro climate. Well known large-scale forcings of east African climate are sea surface temperature variations in the Pacific and, more important, in the Indian Ocean. 5) Regional modification of large-scale circulation: The regional precipitation response in East Africa due to large-scale forcing is not adequately resolved in a global climate model as used in 4). Thus, mesoscale model experiments with the numerical atmospheric model RAMS will be conducted within this goal. They are thought to reveal the modification of atmospheric flow by the Kilimanjaro massif on a regional scale. 6) Practical aspects: Based on micro- and mesoscale results, (i) how much water is provided by glaciers, (ii) providing future projections of glacier behavior as basis for economic and societal studies (practical part), e.g., for studies on the impact of vanishing glaciers on Kibo's touristic appeal, and (iii) which impact does deforestation on the Kilimanjaro slopes have on summit climate? Referring to item 2), two new automatic weather stations have been installed in February 2005. They complete a station operated by Massachusetts University on the surface of the Northern Icefield since 2000.
The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.
Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.
BACKGROUND: The Kingdom of Jordan belongs to the ten water scarcest countries in the world, and climate change is likely to increase the frequency of future droughts. Jordan is considered among the 10 most water impoverished countries in the world, with per capita water availability estimated at 170 m per annum, compared to an average of 1,000 m per annum in other countries. Jordan Government has taken the strategic decision to develop a conveyor system including a 325 km pipe to pump 100 million cubic meters per year of potable water from Disi-Mudawwara close to the Saudi Border in the south, to the Greater Amman area in the north. The construction of the water pipeline has started end of 2009 and shall be finished in 2013. Later on, the pipeline could serve as a major part of a national water carrier in order to convey desalinated water from the Red Sea to the economically most important central region of the country. The conveyor project will not only significantly increase water supplies to the capital, but also provide for the re-allocation of current supplies to other governorates, and for the conservation of aquifers. In the context of the Disi project that is co-funded by EIB two Environmental and Social Management Plans have been prepared: one for the private project partners and one for the Jordan Government. The latter includes the Governments obligation to re-balance water allocations to irrigation and to gradually restore the protected wetlands of Azraq (Ramsar site) east of Amman that has been depleted due to over-abstraction by re-directing discharge of highland aquifers after the Disi pipeline becomes operational. The Water Strategy recognizes that groundwater extraction for irrigation is beyond acceptable limits. Since the source is finite and priority should be given to human consumption it proposes to tackle the demand for irrigation through tariff adjustments, improved irrigation technology and disincentive to water intensive crops. The Disi aquifer is currently used for irrigation by farms producing all kinds of fruits and vegetables on a large scale and exporting most of their products to the Saudi and European markets and it is almost a third of Jordan's total consumption. The licenses for that commercial irrigation were finished by 2011/12. Whilst the licenses will be not renewed the difficulty will be the enforcement and satellite based information become an important supporting tool for monitoring. OUTLOOK: The ESA funded project Water management had the objective to support the South-North conveyor project and the activities of EIB together with the MWI in Jordan to ensure the supply of water for the increasing demand. EO Information provides a baseline for land cover and elevation and support the monitoring of further stages. usw.
In subsoils, organic matter (SOM) concentrations and microbial densities are much lower than in topsoils and most likely highly heterogeneously distributed. We therefore hypothesize, that the spatial separation between consumers (microorganisms) and their substrates (SOM) is an important limiting factor for carbon turnover in subsoils. Further, we expect microbial activity to occur mainly in few hot spots, such as the rhizosphere or flow paths where fresh substrate inputs are rapidly mineralized. In a first step, the spatial distribution of enzyme and microbial activities in top- and subsoils will be determined in order to identify hot spots and relate this to apparent 14C age, SOM composition, microbial community composition and soil properties, as determined by the other projects within the research unit. In a further step it will be determined, if microbial activity and SOM turnover is limited by substrate availability in spatially distinct soil microsites. By relating this data to root distribution and preferential flow paths we will contribute to the understanding of stabilizing and destabilizing processes of subsoil organic matter. As it is unclear, at which spatial scale these differentiating processes are effective, the analysis of spatial variability will cover the dm to the mm scale. As spatial segregation between consumers and substrates will depend on the pore and aggregate architecture of the soil, the role of the physical integrity of these structures on SOM turnover will also be investigated in laboratory experiments.
Water, carbon and nitrogen are key elements in all ecosystem turnover processes and they are related to a variety of environmental problems, including eutrophication, greenhouse gas emissions or carbon sequestration. An in-depth knowledge of the interaction of water, carbon and nitrogen on the landscape scale is required to improve land use and management while at the same time mitigating environmental impact. This is even more important under the light of future climate and land use changes.In the frame of the proposal 'Uncertainty of predicted hydro-biogeochemical fluxes and trace gas emissions on the landscape scale under climate and land use change' we advocate the development of fully coupled, process-oriented models that explicitly simulate the dynamic interaction of water, carbon and nitrogen turnover processes on the landscape scale. We will use the Catchment Modelling Framework CMF, a modular toolbox to implement and test hypothesis of hydrologic behaviour and couple this to the biogeochemical LandscapeDNDC model, a process-based dynamic model for the simulation of greenhouse gas emissions from soils and their associated turnover processes.Due to the intrinsic complexity of the models in use, the predictive uncertainty of the coupled models is unknown. This predictive (global) uncertainty is composed of stochastic and structural components. Stochastic uncertainty results from errors in parameter estimation, poorly known initial states of the model, mismatching boundary conditions or inaccuracies in model input and validation data. Structural uncertainty is related to the flawed or simplified description of natural processes in a model.The objective of this proposal is therefore to quantify the global uncertainty of the coupled hydro-biogeochemical models and investigate the uncertainty chain from parameter uncertainty over forcing data uncertainty up the structural model uncertainty be setting up different combinations of CMF and LandscapeDNDC. A comprehensive work program has been developed structured in 4 work packages, that consist of (1) model set up, calibration and uncertainty assessment on site scale followed by (2) an application and uncertainty assessment of the coupled model structures on regional scale, (3) global change scenario analyses and finally (4) evaluating model results in an ensemble fashion.Last but not least, a further motivation of this proposal is to provide project results in a manner that they support planning and decision taking under uncertainty, as this proposal is part of the package proposal on 'Methodologies for dealing with uncertainties in landscape planning and related modelling'.
bifa hat ein Vorhaben für die G8- Staaten bearbeitet, in dem die Entwicklungen in Deutschland innerhalb der neun Handlungsfelder ( Actions ) des Kobe 3R Action Plan dargestellt werden. Mit der 3R-Initiative beabsichtigen die G8-Staaten seit 2004 eine bessere Verankerung der Nachhaltigkeit im Umgang mit Rohstoffen durch die stärkere Förderung der drei Prinzipien Reduce, Reuse, Recycle , abgekürzt 3R , in den nationalen Abfallwirtschaftspolitiken. Im Rahmen der Beauftragung untersuchte bifa, welche Punkte aus dem Kobe 3R Action Plan bereits hinreichend durch bestehende Entwicklungen bzw. ergriffene Maßnahmen abgedeckt sind, bei welchen Aktionen noch Lücken bestehen und wie diese Lücken gefüllt werden können. Legt man die drei Zielsetzungen des Kobe 3R Action Plan und die ihnen zugeordneten Handlungsfelder als Prüfraster über die deutsche Abfallwirtschaftspolitik, lässt sich ein sehr hoher Erfüllungsgrad feststellen. Ein erheblicher Teil der vorgeschlagenen Handlungsoptionen war in Deutschland bereits vor 2008 durch konkrete Maßnahmen umgesetzt worden. Für einen anderen Teil wiederum lässt sich der Ursprung, z. B. in Form eines ersten Gesetzentwurfs, auf die Zeit vor 2008 zurückdatieren, die Umsetzung durch die Veröffentlichung im Bundesgesetzblatt aber fand 2008-2011 statt. Einige Regelungen setzen Richtlinien oder Verordnungen der EU, die ihrerseits zum Teil auf Bestrebungen Deutschlands hin zustande kamen, in nationales Recht um. Mit dem in einer fortgeschrittenen Version vorliegenden Entwurf eines novellierten Kreislaufwirtschaftsgesetzes vollzieht Deutschland einen weiteren wichtigen Schritt hin zu einer Abfallwirtschaft, deren Markenzeichen insbesondere eine hohe Ressourceneffizienz ist. Dennoch verbleiben Optimierungspotenziale, zu deren Ausschöpfung bifa Vorschläge für das Bundesumweltministerium erarbeitet hat. Im Zuge des Projekts analysierte bifa u. a. die Importe und Exporte notifizierungspflichtiger Abfälle. Der Saldo hat sich den bifa-Analysen zufolge seit 1998 umgekehrt: Wurden 1998 noch etwa doppelt so viel notifizierungspflichtige Abfälle exportiert wie importiert, hat sich der Import seitdem vervierfacht und die Exporte sind sogar leicht gesunken. Ein wichtiger Grund ist die Verfügbarkeit von Behandlungs- und Verwertungskapazitäten von hoher Leistungsfähigkeit in Deutschland. Die Schadstoffentfrachtung von Abfällen aus Ländern mit einer wenig entwickelten Entsorgungsinfrastruktur führt jedoch innerhalb der deutschen Öffentlichkeit immer wieder zu Kontroversen. Methoden: Analyse und Moderation sozialer Prozesse.
The AZV (Altitudinal Zonation of Vegetation) Project was initiated in the year 2002. On the basis of a detailed regional study in continental West Greenland the knowledge about altitudinal vegetation zonation in the Arctic is aimed to be enhanced. The main objectives of the project are: a) considering the regional study: characterize mountain vegetation with regard to flora, vegetation types, vegetation pattern and habitat conditions, investigate the differentiation of these vegetation characteristics along the altitudinal gradient, develop concepts about altitudinal indicator values of species and plant communities, extract suitable characteristics for the distinction and delimitation of vegetation belts, assess altitudinal borderlines of vegetation belts in the study area. b) considering generalizations: test the validity of the altitudinal zonation hypothesis of the Circumpolar Arctic Vegetation Map ( CAVM Team 2003), find important determinants of altitudinal vegetation zonation in the Arctic, develop a first small scale vegetation map of entire continental West Greenland. Field work consists of vegetational surveys according to the Braun-Blanquet approach, transect studies, soil analyses, long-time-measurements of temperature on the soil surface and vegetation mapping in three different altitudinal vegetation belts (up to 1070 m a.s.l.).
Research question: Agri-environment schemes play an increasingly important role in European CAP (Common Agricultural Policy) to support biodiversity and environment in agricultural landscapes. They have been implemented since 1992 and now cost a yearly 1.7 billion Euro. Still, there is no conclusive evidence that these schemes actually do contribute to the conservation of particularly biodiversity. The primary objective of this project is to evaluate the (cost-) effectiveness of European agri-environment schemes in protecting biodiversity and to determine the primary processes that determine their effectiveness. This project furthermore aims to determine how CAP may be introduced in candidate EU-members without unacceptable loss of biodiversity. It will provide simple guidelines how researchers, governmental authorities may efficiently evaluate agri-environmental measures. Aim: Agri-environment schemes have been used to protect biodiversity and environment in agricultural areas since 1992. Their effectiveness has never been reliably evaluated. This project aims to evaluate the (cost-)effectiveness of agri-environment schemes with respect to biodiversity conservation in five European countries. It will determine the proper scales that have to be addressed for conservation efforts for a range of species groups. It will determine the most important environmental factors that influence the effectiveness of the schemes. Based on this, recommendations will be made how the effectiveness of schemes may be improved and simple guidelines will be produced how ecological effects of agri-environment schemes can be evaluated efficiently by governmental authorities or other institutions. The ecological effects of the introduction of CAP in a candidate EU-member will be investigated to reduce negative side effects of anticipated land-use changes Scientific methods: We will examine the effectiveness of agri-environment schemes by surveying pairs of fields: a field with an agri-environment scheme and a nearby field that is conventionally managed. In five countries, in each country in three areas, and in each area on seven pairs of fields the species richness of birds, plants and three insect groups (pollinators, herbivores, predators) will be determined. Effects of schemes on pollination efficiency and pest control will be examined using indicator communities. Correlative studies will examine the effects of landscape structure, land-use intensity and species pool on the effectiveness of agri-environmental measures. The spatial scale that is relevant to nature conservation efforts will be investigated via the spatial distribution of species groups. The results will be used to formulate recommendations how to improve the effectiveness of agri-environment schemes and to construct a set of simple guidelines how schemes can be evaluated efficiently yet reliably.
| Origin | Count |
|---|---|
| Bund | 460 |
| Type | Count |
|---|---|
| Förderprogramm | 460 |
| License | Count |
|---|---|
| offen | 460 |
| Language | Count |
|---|---|
| Deutsch | 85 |
| Englisch | 447 |
| Resource type | Count |
|---|---|
| Keine | 371 |
| Webseite | 89 |
| Topic | Count |
|---|---|
| Boden | 407 |
| Lebewesen und Lebensräume | 453 |
| Luft | 357 |
| Mensch und Umwelt | 459 |
| Wasser | 362 |
| Weitere | 460 |