Objectives: Sustainable management of tropical moist forests through private forest owners will become increasingly important. Media report that in Brazil, particularly in Amazonia, approx. 80 percent of the timber harvested is from illegal sources. Private management of forests according to internationally acknowledged standards offers an opportunity to significantly lower the portion of illegally cut timber. Moreover, it contributes significantly to the conservation of the Amazon forest. Private forest owners show a clear long-term commitment towards the implementation of management standards according that is ecologically compatible, socially acceptable and economically viable. The project area, a pristine forest in legal Amazonia in the transition zone between moist tropical forests and savannas (cerrado), is extremely diverse in floristic and faunistic terms. The institute cooperates with the private forest owner. Main tasks are to document the faunistic and floristic diversity, to calculate the Annual Allowable Cut and to elaborate concepts for site-specific silviculture. Results: To date (Oct. 2006) the following activities were started: - a comprehensive inventory system for planning at the FMU-level has been successfully introduced; - the inventory system for the annual coupe area has been designed and data for the first coupe are being processed; - the annual allowable cut is currently calculated based on the results of the above described inventories; - two fauna surveys are completed; one focusing on large mammals and one on the avi-fauna. A long-term monitoring concept to assess the influence of forest management on the faunistic diversity is currently under development; - forest zoning is completed applying terrestrial surveys and interpreting high-resolution satellite images; - a study on the use of Bethollethia excelsa-fruits (Brazil nuts) is currently implemented; - a study on timber properties of lesser known species is currently implemented.
In hydrology, the relationship between water storage and flow is still fundamental in characterizing and modeling hydrological systems. However, this simplification neglects important aspects of the variability of the hydrological system, such as stable or instable states, tipping points, connectivity, etc. and influences the predictability of hydrological systems, both for extreme events as well as long-term changes. We still lack appropriate data to develop theory linking internal pattern dynamics and integral responses and therefore to identify functionally similar hydrological areas and link this to structural features. We plan to investigate the similarities and differences of the dynamic patterns of state variables and the integral response in replicas of distinct landscape units. A strategic and systematic monitoring network is planned in this project, which contributes the essential dynamic datasets to the research group to characterize EFUs and DFUs and thus significantly improving the usual approach of subdividing the landscape into static entities such as the traditional HRUs. The planned monitoring network is unique and highly innovative in its linkage of surface and subsurface observations and its spatial and temporal resolution and the centerpiece of CAOS.
Background: Ghanas transition forests, neighbouring savannahs and timber plantations in the Ashanti region face a constant degradation due to the increased occurrence of fires. In most cases the fires are deliberately set by rural people for hunting purposes. Main target is a cane rat, here called grasscutter (Thryonomys swinderianus), whose bushmeat is highly esteemed throughout the country. The animal is a wild herbivorous rodent of subhumid areas in Africa south of the Sahara. The grasscutter meat is an important source of animal protein. Existing high-value timber plantations (mainly Teak, Tectona grandis) are affected by fires for hunting purposes. Thus resulting in growth reduction, loss of biomass or even complete destruction of the forest stands. It became obvious that solutions had to be sought for the reduction of the fire risk. Objectives: Since 2004 the Institute for World Forestry of the Federal Research Centre for Forestry and Forest Products, Hamburg, Germany is cooperating with a Ghanaian timber plantation company (DuPaul Wood Treatment Ltd.) the German Foundation for Forest Conservation in Africa (Stiftung Walderhaltung in Afrika) and the Center for International Migration with the purpose to improve the livelihood of the rural population in the surroundings of the forest plantation sites and simultaneously to safeguard and improve the timber plantations. The introduction of grasscutter rearing systems to local farmers accompanied by permanent agricultural and agroforestry practices appeared to be a promising approach for the prevention of fires in the susceptible areas. Additionally a functioning grasscutter breeding system could contribute to the improvement of food security, development of income sources and the alleviation of poverty. The following measures are implemented: - Identification of farmers interested in grasscutter captive breeding, - Implementation of training courses for farmers on grasscutter rearing, - Delivery of breeding animals, - Supervision of rearing conditions by project staff, - Development of a local extension service for monitoring activities, - Evaluation of structures for grasscutter meat marketing. Results: After identification of key persons for animal rearing training courses were successfully passed and animals were delivered subsequently. Further investigations will evaluate the effects of the grasscutter rearing in the project region. This will be assessed through the - Acceptance of grasscutter rearing by farmers, - Success of the animal caging, - Reproduction rate, - Meat quality, - Marketing success of meat, - Reduction of fire in the vicinity of the timber plantations, - Improvement of peoples livelihood.
Sediment erosion and transport is critical to the ecological and commercial health of aquatic habitats from watershed to sea. There is now a consensus that microorganisms inhabiting the system mediate the erosive response of natural sediments ('ecosystem engineers') along with physicochemical properties. The biological mechanism is through secretion of a microbial organic glue (EPS: extracellular polymeric substances) that enhances binding forces between sediment grains to impact sediment stability and post-entrainment flocculation. The proposed work will elucidate the functional capability of heterotrophic bacteria, cyanobacteria and eukaryotic microalgae for mediating freshwater sediments to influence sediment erosion and transport. The potential and relevance of natural biofilms to provide this important 'ecosystem service' will be investigated for different niches in a freshwater habitat. Thereby, variations of the EPS 'quality' and 'quantity' to influence cohesion within sediments and flocs will be related to shifts in biofilm composition, sediment characteristics (e.g. organic background) and varying abiotic conditions (e.g. light, hydrodynamic regime) in the water body. Thus, the proposed interdisciplinary work will contribute to a conceptual understanding of microbial sediment engineering that represents an important ecosystem function in freshwater habitats. The research has wide implications for the water framework directive and sediment management strategies.
(1) Terrestrische Biota der Antarktis sind durch geografische Isolation und inselhafte Verteilung geprägt. Die isolierte Lage der Antarktis und die Beschränkung auf weit voneinander entfernte kleine Habitatflecken haben zu einem hohen Endemiten-Anteil und einer starken Regionalisierung der Fauna und Flora geführt. Genetische Differenzierung, lokale Anpassung und die Evolution kryptischer Arten sind die Folge. Die Biodiversitäts-Konvention (CBD) betrachtet genetische Diversität als einen Eckpfeiler biologischer Vielfalt und stellt sie damit in eine Reihe mit der Diversität von Arten und Ökosystemen. Durch Einschleppung ortsfremder Arten und Homogenisierung bislang getrennter Genpools bedroht der Mensch jedoch zunehmend diese Isolation und genetische Differenzierung vieler antarktischer Biota. (2) Obwohl Flechten als wichtigste Primärproduzenten antarktische terrestrische Lebensräume dominieren, fehlen zurzeit Daten zu ihrer genetischen Struktur und Diversität. Der Umfang inter- und intrakontinentalen Genflusses ist bisher völlig unbekannt. Es ist deswegen derzeit unmöglich, den aktuellen und zukünftigen menschlichen Einfluss auf antarktische Flechtenpopulationen auch nur annähernd abzuschätzen.(3) Wir schlagen vor, mittels molekulargenetischer Daten die populationsgenetische Struktur von sechs weit verbreiteten Flechtenarten mit unterschiedlichen Ausbreitungsstrategien zu untersuchen. Dabei soll die Nullhypothese überprüft werden, dass Flechtenpopulationen genetisch nicht differenziert sind. Zusätzlich wollen wir abschätzen, ob menschliche Aktivitäten zur Einschleppung ortsfremder Arten oder Genotypen und zur Homogenisierung von Genpools beitragen. Hierfür sollen Lokalitäten mit hohem und niedrigem menschlichen Einfluss verglichen werden. Das Projekt schafft damit unverzichtbare Grunddaten für die Entwicklung von Schutzstrategien in der Antarktis.
The AZV (Altitudinal Zonation of Vegetation) Project was initiated in the year 2002. On the basis of a detailed regional study in continental West Greenland the knowledge about altitudinal vegetation zonation in the Arctic is aimed to be enhanced. The main objectives of the project are: a) considering the regional study: characterize mountain vegetation with regard to flora, vegetation types, vegetation pattern and habitat conditions, investigate the differentiation of these vegetation characteristics along the altitudinal gradient, develop concepts about altitudinal indicator values of species and plant communities, extract suitable characteristics for the distinction and delimitation of vegetation belts, assess altitudinal borderlines of vegetation belts in the study area. b) considering generalizations: test the validity of the altitudinal zonation hypothesis of the Circumpolar Arctic Vegetation Map ( CAVM Team 2003), find important determinants of altitudinal vegetation zonation in the Arctic, develop a first small scale vegetation map of entire continental West Greenland. Field work consists of vegetational surveys according to the Braun-Blanquet approach, transect studies, soil analyses, long-time-measurements of temperature on the soil surface and vegetation mapping in three different altitudinal vegetation belts (up to 1070 m a.s.l.).
Cydia pomonella granulovirus (CpGV, Baculoviridae) is one of the most important agents for the control of codling moth (CM, Cydia pomonella, L.) in both biological and integrated pest management. The rapid emergence of resistance against CpGV-M, which was observed in about 40 European CM field populations from 2003 on, could be traced back to a single, dominant, sex-linked gene. Since then, resistance management has been based on mixtures of new CpGV isolates (CpGV-I12, -S), which are able to overcome this resistance. Recently, resistance even to these novel isolates was observed in CM field populations. This resistance does not follow the described dominant, sex-linked inheritance trait. At the same time, another isolate CpGV-V15 was identified showing high virulence against these resistant populations. To elucidate this novel resistance mechanism and to identify the resistance gene(s) involved, we propose a comprehensive analysis of this resistance on the cellular and genomic level of codling moth. Because of the lack of previous knowledge of the molecular mechanisms of virus resistance in insects, several different and complementary approaches will be pursued. This study will not only give an in-depth insight into the genetic possibilities for development of baculovirus resistance in CM field populations and how the virus overcomes it, but can also serve as an important model for other baculovirus-host interaction systems.
Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.
The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.
Traditional Indonesian homegardens harbour often high crop diversity, which appears to be an important basis for a sustainable food-first strategy. Crop pollination by insects is a key ecosystem service but threatened by agricultural intensification and land conversion. Gaps in knowledge of actual benefits from pollination services limit effective management planning. Using an integrative and agronomic framework for the assessment of functional pollination services, we will conduct ecological experiments and surveys in Central Sulawesi, Indonesia. We propose to study pollination services and net revenues of the locally important crop species cucumber, carrot, and eggplant in traditional homegardens in a forest distance gradient, which is hypothesized to affect bee community structure and diversity. We will assess pollination services and interactions with environmental variables limiting fruit maturation, based on pollination experiments in a split-plot design of the following factors: drought, nutrient deficiency, weed pressure, and herbivory. The overall goal of this project is the development of 'biodiversity-friendly' land-use management, balancing human and ecological needs for local smallholders.
| Origin | Count |
|---|---|
| Bund | 460 |
| Type | Count |
|---|---|
| Förderprogramm | 460 |
| License | Count |
|---|---|
| offen | 460 |
| Language | Count |
|---|---|
| Deutsch | 85 |
| Englisch | 447 |
| Resource type | Count |
|---|---|
| Keine | 371 |
| Webseite | 89 |
| Topic | Count |
|---|---|
| Boden | 406 |
| Lebewesen und Lebensräume | 440 |
| Luft | 356 |
| Mensch und Umwelt | 460 |
| Wasser | 357 |
| Weitere | 460 |