This data set includes the results of high-resolution digital elevation models (DEM) and digital image correlation (DIC) analysis applied to analogue modelling experiments. Twenty generic analogue models are extended on top of a rubber sheet. Two benchmark experiments are also reported. Detailed descriptions of the experiments can be found in Liu et al. (submitted) to which this data set is supplement. The data presented here are visualized as topography and the horizontal cumulative surface strain (principal strain and slip rake).
The data set includes the Digital Image Correlation (DIC) results for four experiments of releasing bends along dextral strike-slip faults that were performed at the University of Massachusetts at Amherst (USA). Gabriel et al. (in prep.) used the DIC data sets to investigate how releasing bend fault systems evolve within different strength wet kaolin. Information on the experimental set up and methods can be found in the main text and supplement to Gabriel et al. (in prep.). The data here include the incremental displacement time series, strain animation and surface elevation data at the end of the two experiments with different clay strength, which are presented within Gabriel et al. (in prep). We also include in this data repository incremental displacement time series and strain animations from two experiments that repeat the conditions of the experiments featured in Gabriel et al. (2025).
This dataset includes video sequences and strain analysis of 12 analogue models studying crustal-scale deformation and basin reactivation, performed at the Laboratory of Tectonic modelling of the University of Rennes 1. These models show how parameters such as crustal strength, tectonic inheritance and boundary conditions (ishortening/ stretching) control both the distribution of crustal strain and the possibility for pre-existing structures to be reactivated. This dataset includes top-view movies of the 12 models, including strain analysis based on displacement vectors obtained from digital image correlation. Detailed descriptions of models can be found in Guillaume et al. (2022, special issue of Solid Earth on Analogue modelling of basin inversion) to which this dataset is supplementary.
The data set includes the digital image correlation of 16 dextral strike-slip experiments performed at the University of Massachusetts at Amherst (USA). The DIC data sets were used for a machine learning project to build a CNN that can predict off-fault deformation from active fault trace maps. The experimental set up and methods are described with the main text and supplement to Chaipornkaew et al (in prep). To map active fault geometry and calculate the off-fault deformation we use the Digital Image Correlation (DIC) technique of Particle Image Velocimetry (PIV) to produce incremental horizontal displacement maps. Strain maps of the entire region of interest can be calculated from the displacements maps to determine the fault maps and estimate off-fault strain throughout the Region of Interest (ROI). We subdivide each ROI into five subdomains, windows, for training the CNN. This allows a larger dataset from the experimental results. The data posted here include the incremental displacement time series and animations of strain for the entire ROI.
This data set includes the results of digital image correlation analysis applied to nine experiments (Table 1) on magma-tectonic interaction performed at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam in the framework of EPOS transnational access activities in 2017. The models use silicone oil (PDMS G30M, Rudolf et al., 2016) and Quartz sand (G12, Rosenau et al., 2018) to simulate pre-, syn- and post-tectonic intrusion of granitic magma into upper crustal shear zones of simple shear and transtensional (15° obliquity) kinematics. Three reference experiments (simple shear, transtension, intrusion) are also reported. Detailed descriptions of the experiments can be found in Michail et al. (submitted) to which this data set is supplement. The models have been monitored by means of digital image correlation (DIC) analysis including Particle Image Velocimetry (PIV; Adam et al., 2005) and Structure from Motion photogrammetry (SfM; Donnadieu et al., 2003; Westoby et al., 2012). DIC analysis yields quantitative model surface deformation information by means of 3D surface topography and displacements from which surface strain has been calculated. The data presented here are visualized as surface deformation maps and movies, as well as digital elevation and intrusion models. The results of a shape analysis of the model plutons is provided, too.
This data set includes the results of digital image correlation analysis applied to analogue modelling experiments (Table 1) on the effect of weakness during distributed crustal extension performed at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. Ten generic analogue models made of a layer of Quartz sand (G12, Rosenau et al., 2018) including a weak silicone oil “seed” (PDMS G30M, Rudolf et al., 2016) to localize deformation have been extended on top of a basal foam block. A benchmark experiment (basal foam only) and a reference model (layer of sand without seed) are also reported. Detailed descriptions of the experiments can be found in Osagiede et al. (2021) to which this data set is supplement. The models have been monitored by means of digital image correlation (DIC) analysis (Adam et al., 2005). DIC analysis yields quantitative information about model surface deformation in 2D and 3D. The data presented here are visualized as finite strain and displacement maps as well as cumulative strain and displacement profiles.
This dataset provides friction data from ring-shear tests (RST) on glass beads used in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam as an analogue for “weak” brittle layers in the crust or lithosphere (Ritter et al., 2016; Santimano et al., 2015; Contardo et al., 2011; Reiter et al., 2011; Hoth et al., 2007, 2006; Kenkmann et al., 2007; Deng et al., 2018) or in stick-slip experiments (Rudolf et al., 2019). The glass beads with a diameter of 40-70 µm have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.46, µD = 0.40 and µR = 0.44, respectively. Cohesion ranges between 33 and 42 Pa. A rate-weakening of ~3 % per ten-fold change in shear velocity v is evident.
This dataset provides friction data from ring-shear tests (RST) on glass beads used in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam as an analogue for “weak” brittle layers in the crust or lithosphere (Ritter et al., 2016; Santimano et al., 2015; Contardo et al., 2011; Reiter et al., 2011; Hoth et al., 2007, 2006; Kenkmann et al., 2007; Deng et al., 2018) or in stick-slip experiments (Rudolf et al., 2019). The glass beads with a diameter of 70-110 µm have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.48, µD = 0.39 and µR = 0.44, respectively. Cohesion ranges between 3 and 28 Pa. A rate-weakening of ~4 % per ten-fold change in shear velocity v is evident.
This dataset provides friction data from ring-shear tests (RST) on glass beads used in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam as an analogue for “weak” brittle layers in the crust or lithosphere (Ritter et al., 2016; Santimano et al., 2015; Contardo et al., 2011; Reiter et al., 2011; Hoth et al., 2007, 2006; Kenkmann et al., 2007; Deng et al., 2018) or in stick-slip experiments (Rudolf et al., 2019). The glass beads with a diameter of 300-400 µm have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.58, µD = 0.43 and µR = 0.49, respectively. Cohesion ranges between 8 and 81 Pa. A rate-weakening of ~7 % per ten-fold change in shear velocity v is evident.
This dataset provides friction data from ring-shear tests (RST) on different types of quartz sand used in the Laboratorio de modelización analógica of the Universidad de Zaragoza (UZ, Spain) as an analogue for brittle layers in the crust or lithosphere (Izquierdo-Llavall & Casas-Sainz, 2012; Calvín et al., 2013; Pueyo Anchuela et al., 2016; Peiro et al., 2018; Pueyo et al., 2018; Izquierdo-Llavall et al., submitted). The materials (quartz sand, green coloured quartz sand mixture, black coloured quartz sand) have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam.According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Friction coefficients of the pure quartz sand and the green quartz sand mixture are similar (µP = 0.74 – 0.76, µD = 0.56 – 0.60, µR = 0.61 – 0.64), whereas friction coefficients of the black coloured quartz sand are lower (µP = 0.48, µD = 0.39, µR = 0.45). Cohesions of all sands range between 40 and 150 Pa. A minor rate-weakening of ~1 % per ten-fold change in shear velocity v is evident.The tested materials are quartz sands with a grain size of 0.063 – 0.4 mm and bulk densities of ρ = 1610-1800 kg m^-3. The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures and shear velocities similar to sandbox experiments.
Origin | Count |
---|---|
Wissenschaft | 11 |
Type | Count |
---|---|
unbekannt | 11 |
License | Count |
---|---|
offen | 11 |
Language | Count |
---|---|
Englisch | 11 |
Resource type | Count |
---|---|
Keine | 11 |
Topic | Count |
---|---|
Boden | 11 |
Lebewesen & Lebensräume | 3 |
Luft | 2 |
Mensch & Umwelt | 11 |
Wasser | 4 |
Weitere | 11 |