Naturräumliche Gliederung (1:280.000) Flächennutzung (1:280.000) Potenzielle Natürliche Vegetation (1:280.000) Gebiete mit besonderer avifaunistischer Bedeutung (1:280.000) Gebiete mit besonderer Bedeutung für den Fledermausschutz (1:280.000) Biotoppotenzial (1:280.000) Natürliche Bodenfunktionen (1:280.000) Archivfunktion (1:280.000) Erosionsgefährdung (1:280.000) Stoffliche Belastungen (1:280.000) Rohstoffpotenzial (1:280.000) Fließgewässernetz und Einzugsgebiete (1:280.000) Zustandsbewertung Fischfauna und Querbauwerke (1:280.000) Beurteilung der Zielerreichung von Oberflächenwasserkörpern (1:280.000) Trinkwasser- und Heilwasserschutzgebiete (1:280.000) Beurteilung der Zielerreichung von Grundwasserkörpern (1:280.000) Grundwasserabhängige Biotope und Ökosysteme (1:280.000) Mittlere jährliche Windgeschwindigkeit (1:280.000) Erholungseignung (1:280.000) Bodennahe Durchlüftungsverhältnisse (1:280.000) Freiflächensicherungsbedarf (1:280.000) Waldflächenentwicklung (1:280.000) Ausgewählte kulturlandschaftlich bedeutsame Bereiche und Elemente (1:280.000) Bereiche mit besonderer Sichtexposition (1:280.000) Landschaftliche Erlebniswirksamkeit (1:280.000) Unzerschnittene Räume (1:280.000) Landschaftsbereiche mit besonderen Nutzungsanforderungen (1:200.000) Sanierungsbedürftige Bereiche der Landschaft (1:200.000) Freiraumsicherung (1:100.000) Regionale Grünzüge - Begründung (1:200.000) Schutzgebiete nach Naturschutzrecht (1:100.000) Ökologischer Verbund und regionale Maßnahmenschwerpunkte (1:200.000)
Viele Prozesse, die an der Verbreitung von Pflanzenarten und der Funktion von Ökosystemen beteiligt sind, finden unter der Erde statt. Da sich jedoch die meisten Studien mit oberirdischen Pflanzenmerkmalen auseinandersetzten, wurden die unterirdischen Merkmale bislang weitestgehend ignoriert. Die Biodiversitätsforschung bedarf demnach noch großer Mengen an Wurzeldaten vieler Pflanzenarten. Deshalb möchten wir Wurzelmerkmale und Daten über Pilzendophyten für die ca. 350 Blütenpflanzen, die in den 150 experimentellen Grasslandflächen (EPs) der Biodiversitätsexploratorien vorkommen, aufnehmen. In mehreren Experimenten sollen Pflanzen dieser Arten kultiviert und Daten zu Wurzelmorphologie, Plastizität der Wurzelmorphologie (in Abhängigkeit von Düngerzugabe), Aufnahmekapazität von Stickstoff in unterschiedlicher Form sowie Infektion durch Pilzendophyten bestimmt werden. Wir möchten die so erhobenen Daten gemeinsam mit anderen Daten aus den Biodiversitätsexploratorien nutzen, um zu untersuchen, inwieweit das Auftreten und die Abundanz der betrachteten Arten durch ihre Wurzelmerkmale bestimmt werden. Dabei interessiert uns der Zusammenhang der Wurzelmerkmale mit Umweltfaktoren wie der Landnutzung und die Frage, inwieweit die unterirdische Merkmalsdiversität mit der oberidischen Merkmalsdiversität und den Ökosystemfunktionen zusammenhängt.
Das Schwerpunktprogramm ist multidisziplinär aufgebaut mit den interdisziplinär verwobenen Schwerpunkten:-- Physik und Chemie von Ozean, Eis und Atmosphäre -- Geowissenschaften -- Biowissenschaften. Die Polarregionen sind von großer Bedeutung für moderne Umweltforschung sowie für die Beurteilung von zukünftigen Klimaänderungen und ihren Folgen. Da die Reaktionen in den Polargebieten schneller erfolgen als in temperierten oder tropischen Zonen, gelten sie als Schlüsselgebiete der Erde. Dies gilt auch für die Lithosphärenforschung sowie für die Erforschung von globalen Klimaereignissen, Ozeanen und der Ökologie. Zudem beeinflussen sie das globale Wettergeschehen und den Wärmehaushalt. Während der letzten 45 Millionen Jahre ist Antarktika durch die Plattentektonik klimatisch und ozeanografisch isoliert worden. Der daraus resultierende Klimaeinfluss schuf den antarktischen Zirkumpolarstrom und die Vereisung beider Pole. Dieser Zirkumpolarstrom bildet das größte Zirkulationssystem der Erde. Er beeinflusst die Bildung von antarktischem Tiefenwasser und ist die Heimat für produktive Meereslebensgemeinschaften, die sich an die Extrembedingungen angepasst haben. Im Weddell- und Rossmeer schieben sich die Schelfeise hunderte Kilometer in das Meer hinaus, wobei die physikalischen und biologischen Prozesse unter ihnen unerforscht sind. Das Wasser unter dem Schelfeis besitzt hohe Dichten und fließt den Hang hinunter, um sich in die Tiefsee zu ergießen, wo es wiederum alle Weltmeere durchströmt. Die natürlichen Schwankungen des Erdklimas sind in marinen Sedimenten und in Eiskernen Grönlands und Antarktikas gespeichert. Überraschende Ergebnisse deutscher Forscher zeigten, dass Klimaumschwünge in Zeitskalen von nur Jahren oder Dekaden erfolgten. Ein anderer Aspekt der Klimaforschung betrachtet die Abnahme des polaren Ozons. Kontinuierliche Messungen belegen, dass die Ozonabnahme einhergeht mit einer Zunahme des schädlichen UV-B. Bedingt durch ihre Geschichte und Lage haben sich gerade an den Polen spezielle Habitate ausgebildet, die besonders empfindlich auf solche Störungen reagieren. Deshalb können Klimaänderungen und ihre Auswirkungen hier eher erkannt werden als in anderen Ökosystemen. Zusätzlich stellt die Antarktis mit ihren Organismen einen wichtigen Anteil der Biodiversität. Polarforschung muss deshalb eine Sonderrolle zukommen bei Themen wie z.B. Kontinententstehung und -zerfall, Klimaarchiv und Sensitivität gegenüber Umweltveränderungen.
Laminierte Seesedimente sind unschätzbare Informationsquellen zur Geschichte der Umwelt und des Klimas direkt aus der Lebenssphäre des Menschen. Ein exzellentes Beispiel dafür ist der Sihailongwan-Maarsee aus NE-China. In einem immer noch dicht bewaldeten Vulkangebiet gelegen, bieten seine Sedimente ein ungestörtes Abbild der Monsunvariationen über zehntausende von Jahren. Nur die letzten ca. 200 Jahre zeigen einen deutlichen lokalen anthropogenen Einfluss. Das Monsunklima der Region mit Hauptniederschlägen während des Sommers und extrem kalten Wintern unter dem Einfluss des Sibirischen Hochdrucksystems bildet die Voraussetzung für die Bildung von saisonal deutlich geschichteten Sedimenten (Warven), die in dem tiefen Maarsee dann auch überwiegend ungestört erhalten bleiben. Insbesondere die Auftauphase im Frühjahr bringt einen regelmässigen Sedimenteintrag in den See, der das Gerüst für eine derzeit bis 65.000 Jahre vor heute zurückreichende Warvenchronologie bildet. Für das letzte Glazial zeigen Pollenspektren aus dem Sihailongwan-Profil Vegetationsvariationen im Gleichklang mit bekannten klimatischen Variationen des zirkum-nordatlantischen Raumes (Dansgaard-Oeschger-Zyklen) zu dieser Zeit. Der Einfluss dieser Warmphasen auf das Ökosystem See war jedoch sehr unterschiedlich. So sind die Warven aus den Dansgaard-Oeschger (D/O) Zyklen 14 bis 17 mit extrem dicken Diatomeenlagen (hauptsächlich Stephanodiscus parvus/minutulus) denen vom Beginn der spätglazialen Erwärmung zum Verwechseln ähnlich, während Warven aus dem D/O-Zyklus 8 kaum Unterschiede zu überwiegend klastischen Warven aus kalten Interstadialen aufweisen. Gradierte Ereignislagen mit umgelagertem Bodenmaterial sind deutliche Hinweise auf ein Permafrost-Regime während der Kaltphasen. Auch während des Spätglazials treten deutliche klimatische Schwankungen auf, die der in europäischen Sedimentarchiven definierten Gerzensee-Oszillation und der Jüngeren Dryas zeitlich exakt entsprechen. Das frühe Holozän ist von einer Vielzahl Chinesischer Paläoklima-Archive als Phase mit intensiverem Sommermonsun bekannt. Überraschenderweise sind die minerogenen Fluxraten im Sihailongwan-See während des frühen Holozäns trotz dichter Bewaldung des Einzugsgebietes sehr hoch. Sowohl Mikrofaziesanalysen der Sedimente als auch geochemische Untersuchungen deuten auf remoten Staub als Ursache dieses verstärkten klastischen Eintrags hin. Der insbesondere in den letzten Jahrzehnten zunehmende Einfluss des Menschen zeigt sich in den Sedimenten des Sihailongwan-Maarsees vor allem in einem wiederum zunehmenden Staubeintrag und einer Versauerung im Einzugsgebiet. Der anthropogene Einflusss auf die lokale Vegetation ist immer noch gering.
In der nächsten Phase der Biodiversitäts Exploratorien sollen Experimente dabei helfen die Effekte verschiedener Landnutzungskomponenten auf Ökosysteme zu ermitteln. 'Common garden' Experimente werden genutzt, um die Umweltheterogenität zu minimieren, die ansonsten interessante Effekte verschleiert. Wir planen Grasnarben, die von n = 42 Plots der Biodiversitäts Exploratorien entnommen werden, in einem 'common garden' auszubringen wo die Intensität der Mahd und der Düngung manipuliert werden soll. In den nächsten drei bis 15 Jahren werden die Veränderungen in den Pflanzen- und Bakteriengemeinschaften auf den Grasnarben verfolgt. Hierfür wird die Zusammensetzung und Diversität der Pflanzen und Bakterien (next-generation 16S rRNA gene amplicon sequencing) ermittelt. Zusätzlich werden noch 3D-Modelle der Pflanzengemeinschaften, die durch multispektrale Information ergänzt werden, erstellt (PlantEye F500, Phenospex, Heerlen, The Netherlands). Diese Modelle erlauben die Errechnung von Parametern, die ganze Pflanzengemeinschaften charakterisieren. Änderungen in den Pflanzen- und Bakteriengemeinschaften werden mit der Landnutzung der Plots in den vergangenen Jahren ins Verhältnis gesetzt. Wir erwarten, dass Gemeinschaften, die aus verschiedenen Plots stammen, aber die gleiche Landnutzung erfahren in Ihrer Zusammensetzung und Diversität konvergieren; Gemeinschaften aus den gleichen Plots, die aber unterschiedliche Landnutzung erfahren, sollten divergieren. Das Projekt nutzt das Vorwissen zu den einzelnen Plots in Bezug auf Landnutzung und Artenzusammensetzung, liefert neuartige Daten für die Biodiversitäts Exploratorien, und stellt einen unabhängigen und neuartigen Beitrag zu der Frage, wie Landnutzug Ökosysteme beeinflusst, dar.
Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.
Anthropogene Umweltveränderung beeinflussen die Phänologie und genetische Diversität von Pflanzen, mit weitreichenden Konsequenzen für ökologische Lebensgemeinschaften und die Evolution. Langzeitdaten solcher Veränderungen sind jedoch selten. Herbarien bieten die seltene Möglichkeit für Langzeitstudien über Phänologie und genetische Diversitätsveränderungen, vor allem da neue genomische Hochdurchsatzmethoden neuerdings auch eine Analyse historischer Proben von Nicht-Modellarten erlauben. Wir schlagen ein Forschungsprojekt vor, dass die Langzeitperspektiven von Herbarien mit den Stärken der Biodiversitätsexploratorien verbinden und die Phänologie und genetische Diversität heutiger Pflanzen in der Biodiversitätsexploratorien mit der von historischen Belegen der gleichen Arten aus den gleichen Regionen vergleichen soll. Wir werden uns auf frühblühende Pflanzen im Laubwald-Unterwuchs konzentrieren, da diese Arten eine deutliche, zeitlich begrenzte Blühperiode haben, und somit besonders geeignet zur Untersuchung phänologischer Veränderungen, sowie des Einflusses der Waldnutzung auf die Phänologie, sein sollten. Unser Projekt wird Feldbeobachtungen mit dem Studium naturwissenschaftlicher Sammlungen und cutting-edge Methoden der Herbariumgenomik verbinden um (1) eine umfassende Untersuchung der Blühphänologie aller frühblühenden Pflanzenarten in Wald-EPs durchzuführen und den Einfluss der Waldnutzung auf die Blühphänologie zu testen, sowie (2) mehrere grosse Herbaria nach Belegen der gleichen Pflanzenarten aus den gleichen Regionen zu durchsuchen, um langfristige Trends in der Blühphänologie, sowie den Einfluss des Klimas auf die Phänologie zu testen und die aktuellen Phänologie daten in einen historischen Kontext stellen zu können. Darüberhinaus wollen wir eine neue genomische Hochdurchsatzmethode zur Untersuchung historischer Herbarbelege, hyRAD-hybridization capture using RAD probes, etablieren und austesten, und (4) diese Methode dann dazu verwenden, um die genetische Diversität der heutigen Pflanzen im Laufwaldunterwuchs mit der ihrer Vorfahren aus den gleichen Regionen zu vergleichen. Unser Projekt wird die erste umfassende Unterschung von Pflanzenphänologie, sowie die erste Analyse der genetischen Diversität von Waldpflanzen in den Biodiversitätsexploratorien beinhalten. Vor allem bietet es erstmals eine Langzeitperspektive, und den ersten Versuch eines Vergleichs heutiger mit historischer Biodiversität in den Biodiversitätsexploratorien.
Diversität ist eine wichtige Voraussetzung für Adaptation an Umweltveränderungen. Biodiversität auf allen Ebenen (Allele, Arten, Interaktionen) ist wichtig für die Funktion und Stabilität von Ökosystemen, weil Diversität auch Redundanz bedeutet und damit die Möglichkeit ausgestorbene Arten/Genotypen auszutauschen. Individuelle Merkmalsausprägungen und phänotypische Plastizität können ebenfalls zur Stabilisierung von Ökosystemen beitragen, weil sie Populationsgrößenschwankungen abpuffern und so lokale Aussterbeereignisse verhindern. In jüngere Zeit nimmt die Biodiversität dramatisch ab, während massive Störungen von Ökosystemen immer häufiger und immer heftiger auftreten. Uns interessiert daher, wie individuelle Merkmalsausprägungen und phänotypische Plastizität sich auf die genetische Diversität einer Population und auf eine Räuber-Beute Interaktion auswirken und welche potentiellen Auswirkungen das auf die Stabilität des Ökosystems hat. Zwei Hypothesen werden betrachtet:(I) Phänotypische Plastizität (trait variation) kann die Biodiversität erhöhen, da sie eine bessere Nischenausnutzung erlaubt.(II) Phänotypische Plastizität (trait variation) kann die Biodiversität verringern, da sie den plastischen Organismen ermöglicht verschiedene Nischen zu besetzen anstatt zur Spezialisierung verschiedener Genotypen zu führen. Zusätzlich werden wir testen welchen Einfluss abiotische Stressoren auf diese Interaktionen haben. Wir verwenden in unschweren Versuchen das Räuber-Beute Modellsystem Daphnia pulex und Chaoborus Larven in einem zweiteiligen Versuchsansatz: 1) Wir werden Mesocosmen Experimente durchführen, bei denen wir den Einfluss diverser Stressoren (Predation, erhöhte Temperaturen, erhöhte CO2 Werte) auf die genetische Diversität einer Daphnia Population testen. Die Daphnia Population wird aus 10 verschiedenen Klonen bestehen, die unterschiedlich plastisch auf Räuberkairomon reagieren. Die Populationen werden einem biotischen Stressor (Invertebraten-Räuber) und zwei abiotischen Stressoren (erhöhte CO2 Werte und erhöhte Temperaturen), die direkt auf anthropogene Einflüsse zurück gehen, ausgesetzt. Wir werden die klonale Diversität der Beuteart und die Performance der Räuber untersuchen.2) Im zweiten Versuchsteil werden wir mit Modellierungen Feedback loops über Beutediversität und Phänotyp/Genotyp Interaktion und Überlebenskapazitäten unter verschiedenen Umweltbedingungen untersuchen. Mit diesem integrativen Versuchsansatz werden wir ein tiefergehendes Verständnis der Effekte von individueller Merkmalsausprägung und phänotypischer Plastizität auf die klonale Diversität von Populationen erzielen. Die Ergebnisse werden uns helfen besser einzuschätzen, wie diese Merkmale die Ökosystemfunktion und -stabilität beeinflussen.
Origin | Count |
---|---|
Bund | 5288 |
Europa | 11 |
Global | 2 |
Kommune | 9 |
Land | 511 |
Schutzgebiete | 1 |
Wissenschaft | 119 |
Zivilgesellschaft | 3 |
Type | Count |
---|---|
Bildmaterial | 5 |
Daten und Messstellen | 980 |
Ereignis | 67 |
Förderprogramm | 3787 |
Gesetzestext | 2 |
Kartendienst | 4 |
Lehrmaterial | 3 |
Sammlung | 9 |
Taxon | 10 |
Text | 605 |
Umweltprüfung | 24 |
unbekannt | 357 |
License | Count |
---|---|
geschlossen | 1790 |
offen | 3994 |
unbekannt | 64 |
Language | Count |
---|---|
Deutsch | 4653 |
Englisch | 2680 |
Resource type | Count |
---|---|
Archiv | 48 |
Bild | 49 |
Datei | 1023 |
Dokument | 363 |
Keine | 3132 |
Multimedia | 2 |
Unbekannt | 38 |
Webdienst | 27 |
Webseite | 2390 |
Topic | Count |
---|---|
Boden | 4847 |
Lebewesen und Lebensräume | 5848 |
Luft | 3505 |
Mensch und Umwelt | 5820 |
Wasser | 3837 |
Weitere | 5848 |