Intensive agricultural production in the Hai River catchment had detrimental impacts on the quantity and quality of ground and surface water. High cropping intensity, irrigation and fertilizer applications of more than 300 kg N/ha resulted in a decrease of the ground water table by more than 30 m within the last decades and severe deterioration of water quality in the Piedmont Plain Region, a part of the Hai River catchment. The shortage of water resources in the Hai River basin not only hinders the development of the local economy, but also results in severe environmental problems such as:- subsidence of the ground surface due to over-exploitation of groundwater, - degradation of ecosystems, - shrinking of rivers and lakes, - non point source pollution of soil and ground water - serious water pollution in the main channels and tributaries. Sustainable land use in that region requires a sound knowledge of the effects of single management measures. However, subsoil heterogeneity is one of the major obstacles, impeding relating cause and effect at larger scales and to assess the effect of single management strategies. In this study, a three-step up-scaling approach is suggested that combines some innovative methodologies, and enables to grasp the heterogeneities usually encountered at the management scale. First, a recently developed robust methodology will be applied to determine deep percolation and groundwater recharge in situ without requiring a fully-fledged soil hydrological model. The results can be compared to seepage data from lysimeters of the Luancheng station. Moreover, spatial heterogeneities and temporal patterns can be determined and can be related to soil hydrological properties. Second, spatial functional hydrological heterogeneity can be assessed based on principal component analysis of time series of soil water content and groundwater recharge, allowing to up-scale detailed measurements from single field sites. Third, processes affecting groundwater quality, and exchange between groundwater and surface water can be investigated using non-linear PCA of soil water, groundwater, and stream water quality data, combined with stable isotope data. The outcome of the project is expected to provide valuable contributions to scale-specific simulation of water and solute fluxes at the management scale.
Objectives: 1. To test if the concept of novel and hybrid ecosystems forwarded by R. Hobbs and colleagues applies to degraded subtropical grasslands, i.e. if these ecosystems group along axes of deviation in abiotic conditions and biotic composition from reference ecosystems. 2. To investigate the extent to which ecosystem functions in the hybrid and novel ecosystems differ from reference grasslands, and whether these differences are related to deviation from the biodiversity of reference systems. 3. To manipulate degraded grasslands through selected restoration methods to identify transition thresholds and to test if restorability of abiotic conditions and biotic composition corresponds to restorability of ecosystem functions. A large-scale rapid ecosystem assessment will form the analytical basis of the study, followed up by field experiments on seed limitation (i.e. lack of seed bank or dispersal) and site limitation (i.e. lack of safe sites for germination and inadequate conditions for plant establishment). The experiments will be conducted in a factorial design testing for transition thresholds between degradation stages.
This project aims to elucidate how sensitive and to which extent soil properties respond to different rangeland management in the grassland and savannah biome of semiarid South Africa, and to figure out to which degree changes of the ecosystems are perceived and caused by farmers' decisions. We hypothesise that both ecosystems respond differently to rangeland degradation: in the savannah biome bush encroachment leads to an improvement of the soil quality, whereas in grasslands degradation of the soils proceeds with intensified management.
Degradation und Desertifikation beeinträchtigen die ruralen Ökosysteme Südtunesiens in steigendem Ausmaß. Remote Sensing und Bodenmessung erfassen den raumzeitlichen Gradienten der qualitativen und quantitativen Dynamik des regressiven Gradienten zunehmender Disbalance der Ökosysteme und vermitteln Planungsstrategien zur Restaurierung und zum nachhaltigen Management angepasster Nutzung.
Das hohe Bevölkerungswachstum in den Entwicklungsländern gilt als eine der wesentlichen Ursachen für die Zerstörung von Ökosystemen und damit als eines der Haupthindernisse, künftig Umweltprobleme zu lösen. In dem Projekt 'Bevölkerungs-wachstum und nachhaltige Entwicklung' wird untersucht, inwiefern Bevölkerungswachstum eine Ursache von Umwelt- und Rohstoffproblemen darstellt und welche Auswirkungen Rohstoff- und Umweltprobleme auf die Entwicklung und Verteilung der Bevölkerung haben. Insbesondere wird untersucht, ob und inwieweit durch die Natur gegebene Restriktionen die Größe der Bevölkerung begrenzen. Ferner ist zu prüfen, ob Mechanismen existieren, die eine Einhaltung dieser Grenzen sicherstellen, und falls das nicht der Fall sein sollte, mit welchen Instrumenten ein solches Überschreiten korrigiert werden kann. Dabei wird aufgezeigt, wie in der Bevölkerungstheorie in der Vergangenheit diese Fragen beantwortet worden sind und wie sich die Frage nach der optimalen Bevölkerungsgröße im Rahmen ökonomischer Analysen konkretisieren lässt.
Wetland vegetation support a high biodiversity and plays an important ecological and hydrological roles in the environment. Hangzhou city with highly significant wetland vegetation biodiversity, lies in Zhejiang province, is very famous in China. The wetland areas are 28.9x104 ha, about 17.4Prozent of total area of Hangzhou city. The types of wetland vegetation are multiplicity and the vegetation biodiversity is abundant. But with the rapid urbanization process in Hangzhou city, the decrease of wetland areas in peri-urban region constitutes a severe problem, which will eventually lead to the loss of wetland vegetation biodiversity and its functions. So it is very important to carry out a project on the research of wetland vegetation biodiversity conservation and sustainable use in Hangzhou city. Its very significant for wetland vegetation biodiversity conservation and sustainable development, improvement of peri-urban ecosystem services and life quality.The project long term goal is to secure the conservation of globally significant wetland vegetation biodiversity in China and establish wetland vegetation biodiversity conservation and sustainable use as a routine consideration in national, provincial and local government decision making and action. The objective is providing science reference for Hangzhou government supporting policy of the urban wetland vegetation biodiversity conservation and sustainable use.
LIFE ist das einzige EU-Förderprogramm, das ausschließlich Projekte zu den Themen Umwelt und Klima fördert. Das Programm wird in der neuen Förderperiode 2021-2027 weitergeführt und finanziell weiter aufgestockt. Die Mittelausstattung beträgt 5,432 Mrd. € zu jeweiligen Preisen. Das allgemeine Ziel des LIFE-Programms besteht darin, „einen Beitrag zum Übergang zu einer nachhaltigen, kreislauforientierten, energieeffizienten, auf erneuerbare Energie gestützten, klimaneutralen und klimaresistenten Wirtschaft zu leisten, die Qualität der Umwelt, einschließlich Luft, Wasser und Boden, zu schützen, wiederherzustellen und zu verbessern sowie den Verlust der biologischen Vielfalt einzudämmen und umzukehren und der Degradation von Ökosystemen zu begegnen – auch durch Unterstützung der Einrichtung und Verwaltung des Natura-2000-Netzes – und damit zu einer nachhaltigen Entwicklung beizutragen.“ Das LIFE-Programm hat zwei Hauptbereiche mit jeweils zwei Unterprogrammen: Bereich „Umwelt“ mit den Teilprogrammen Naturschutz und Biodiversität Kreislaufwirtschaft und Lebensqualität Bereich „Klimapolitik“ mit den Teilprogrammen Klimaschutz und Klimaanpassung Energiewende Nähere Informationen zur LIFE-Beratungsstelle
Umweltbelastungen verursachen hohe Kosten für die Gesellschaft, etwa in Form von umweltbedingten Gesundheits- und Materialschäden, Ernteausfällen oder Schäden an Ökosystemen. Im Jahr 2022 betrugen die Umweltkosten in den Bereichen Straßenverkehr, Strom- und Wärmeerzeugung mindestens 301 Milliarden Euro. Eine ambitionierte Umweltpolitik senkt diese Kosten und entlastet damit die Gesellschaft. Gesamtwirtschaftliche Bedeutung der Umweltkosten Umweltkosten sind ökonomisch höchst relevant. Das zeigte bereits der sogenannte „Stern Report“ im Jahr 2006, der die allein durch den Klimawandel entstehenden Kosten auf jährlich bis zu 20 % des globalen Bruttoinlandprodukts bezifferte. Auch fünfzehn Jahre nach Erscheinen des „Stern Reviews“, bekräftigt der Ökonom Nicholas Stern, dass die Kosten des Nichthandelns die Kosten des Klimaschutzes um ein Vielfaches übersteigen und ruft erneut zu entschiedenem Handeln im Kampf gegen den Klimawandel auf (Stern 2006 und Stern 2021). Auch auf Deutschland bezogene Schätzungen zeigen die ökonomische Bedeutung allein der durch Luftschadstoffe und Treibhausgase entstehenden Kosten. So haben die deutschen Treibhausgas - und Luftschadstoff-Emissionen in den Bereichen Straßenverkehr, Strom- und Wärmeerzeugung im Jahr 2022 Kosten in Höhe von mindestens 301 Milliarden Euro verursacht (siehe Abb. "Umweltkosten durch Treibhausgase und Luftschadstoffe für Strom-, Wärmeerzeugung und Straßenverkehr"). * Basierend auf Kaufkraft 2024 **Klimaschadenskosten ab 2020 basieren auf dem GIVE-Modell, Werte vor 2020 auf dem Vorgänger Modell FUND Zeitreihen zur Entwicklung der Erneuerbaren Energien sowie Energiedaten, TREMOD 6.53 Umweltkosten der Strom- und Wärmeerzeugung Bei der Strom- und Wärmeerzeugung entstehen hohe Umweltkosten. Sie unterscheiden sich in Abhängigkeit von den eingesetzten Energieträgern deutlich. Stromerzeugung mit Braunkohle verursacht die höchsten Umweltkosten, gefolgt von den fossilen Energieträgern Öl und Steinkohle. Bereits deutlich niedriger liegen die Umweltkosten der Stromerzeugung aus Erdgas. Am umweltfreundlichsten ist die Stromerzeugung aus erneuerbaren Energien (siehe Tab. „Umweltkosten der Stromerzeugung“). Auch bei der Wärmeerzeugung ist der eingesetzte Energieträger ein maßgeblicher Faktor für die Höhe der entstehenden Umweltkosten (siehe Tab. „Umweltkosten der Wärmeerzeugung der privaten Haushalte“). Heizen mit Kohle und Strom verursacht mit Abstand die höchsten Umweltkosten. Schon mit deutlichem Abstand folgen die Fernwärmeversorgung und das Heizen mit Heizöl und Erdgas. Die Umweltkosten der erneuerbaren Energien zur Wärmeerzeugung liegen noch deutlich darunter. Dies zeigt, dass der Ausbau erneuerbarer Energien auf dem Wärmemarkt die entstehenden Umweltkosten deutlich verringert. Die Kostensätze der Strom- und Wärmeerzeugung berücksichtigen dabei lediglich die Emission von Luftschadstoffen und Treibhausgasen, die Kosten infolge der Emission toxischer Stoffe (Quecksilber etc.) oder der Zerstörung von Ökosystemen infolge von Landnutzungsänderungen sind auf Grund fehlender Datenverfügbarkeit nicht eingeschlossen. Umweltkosten des Verkehrs Verkehr verursacht neben Emissionen von Luftschadstoffen und Treibhausgasen auch Lärmbelastung und negative Effekte auf Natur und Landschaft, beispielsweise durch die Zerschneidung der Landschaft. Um die Kostensätze für den Straßenverkehr in Deutschland zu bestimmen, werden zunächst die Emissionen aus dem Betrieb der verschiedenen Fahrzeugtypen ermittelt. Diese Emissionen entstehen bei der Verbrennung der Kraftstoffe sowie durch Reifenabrieb und Staubaufwirbelungen. Im Anschluss daran werden die indirekten Emissionen, d. h. Emissionen aus den anderen Phasen des Lebenszyklus geschätzt (zum Beispiel Herstellung, Wartung, Entsorgung sowie die Bereitstellung der Kraftstoffe). Während die meisten Emissionen der konventionellen Antriebe beim Fahren entstehen, sind bei der Elektromobilität die indirekten Emissionen bedeutender. Die Unterschiede zwischen den ermittelten Umweltkosten der einzelnen Verkehrsträger sind beträchtlich (siehe Tab. „Umweltkosten für verschiedene Fahrzeugtypen“). Umwelt- und Gesundheitsschäden aus Luftschadstoffemissionen sind in Städten höher als in ländlichen Gebieten. Das zeigt der Vergleich der verkehrsbezogenen Kostensätze in Stadt und Land. Um diese Kostensätze – also die Kosten pro Personen- oder Tonnenkilometer – zu bestimmen, müssen die jeweiligen Emissionen pro Fahrzeugtyp und die Anteile von Fahrleistungen in städtischen und ländlichen Gebieten berücksichtigt werden. Die Unterschiede zwischen den Fahrzeugtypen sind zum Teil beträchtlich: So sind zum Beispiel Linienbusse zu rund 57 Prozent (%) in der Stadt unterwegs, Reisebusse hingegen nur zu 9 %. Die Kostenschätzungen verdeutlichen beispielsweise die Vorteile eines Ausbaus des öffentlichen Personennahverkehrs: PKW mit einem Benzin-Motor verursachten 2024 Umweltkosten von 7,66 Eurocent pro Personenkilometer (Pkm), Nahverkehrszüge 4,88 Eurocent pro Pkm und Linienbusse nur 4,60 Eurocent pro Pkm. Umweltkosten der Landwirtschaft Ein weiteres wirtschaftliches Feld mit hohen Umweltwirkungen ist die Landwirtschaft. Durch die Produktion von Lebensmitteln und Energieträgern aber auch mit ihrem Potenzial, Kulturlandschaften zu prägen und Biodiversität zu erhalten, erfüllt die Landwirtschaft wichtige Funktionen für die Gesellschaft. Demgegenüber stehen aber auch zentrale negative Umweltwirkungen der Landwirtschaft. Zu diesen gehören neben Landnutzungsänderungen und der Emission von Treibhausgasen auch die Emission von Stickstoff und Phosphor. Der Kostensatz für die Ausbringung eines Kilogramms (kg) Phosphor beträgt dabei 5,33 Euro 2024 . Bei der Ausbringung von Stickstoff fallen Umweltkosten in Höhe von durchschnittlich 11,23 Euro 2024 pro kg an. Wozu dienen Umweltkostenschätzungen? Schätzungen von Umweltkosten sind vielseitig nutzbar. Sie zeigen, wie teuer unterlassener Umweltschutz ist und untermauern die ökonomische Notwendigkeit anspruchsvoller Umweltziele. Mit ihrer Hilfe lassen sich auch die Kosten und Nutzen von umwelt- und klimapolitischen Maßnahmen besser ermitteln. Dies gilt beispielsweise für die Bewertung von Maßnahmen zum Ausbau Erneuerbarer Energien oder zum Schutz von Ökosystemen, die einen beträchtlichen Nutzen in Form von vermiedenen Umwelt- und Gesundheitsschäden haben. Die Schätzung von Umweltkosten ist auch bei Entscheidungen über den Ausbau der Infrastruktur wichtig, etwa bei der Erstellung des Bundesverkehrswegeplans, in den Umweltkostenschätzungen bereits einfließen. Ohne Berücksichtigung der Umweltkosten würden Investitionen in umweltfreundliche Verkehrssysteme systematisch benachteiligt und das Verkehrsnetz stärker ausgebaut, als dies gesamtwirtschaftlich sinnvoll wäre. Darüber hinaus können Umweltkostenschätzungen auch im Rahmen der Gesetzesfolgenabschätzung wertvolle Informationen liefern. "Methodenkonvention zur Ermittlung von Umweltkosten" des Umweltbundesamtes Es gibt eine Fülle von Studien auf nationaler, europäischer und internationaler Ebene, die Umweltkosten schätzen. Die Schätzungen unterscheiden sich dabei je nach nationalen Gegebenheiten und methodischer Herangehensweise. Eine seriöse und verlässliche Schätzung der Umweltkosten erfordert, wissenschaftlich anerkannte Bewertungsverfahren zu nutzen. Die Bewertungsmaßstäbe sollten begründet und möglichst für alle Anwendungsfelder identisch sein. Annahmen und Rahmenbedingungen müssen transparent gemacht werden. Dadurch lassen sich auch die Bandbreiten der Schätzungen in vielen Fällen erheblich eingrenzen. Das UBA hat daher auf Grundlage der Arbeiten von Fachleuten mehrerer Forschungsinstitute (INFRAS, Fraunhofer ISI, EIFER, UFZ, CE Delft, David Anthoff (UC Berkeley)) die Methodenkonvention zur Ermittlung von Umweltkosten erarbeitet. Die derzeit aktuellste Version stellt die Methodological Convention 3.2 for the Assessment of Environmental Costs (derzeit nur in englischer Sprache verfügbar) dar, bei der es sich um eine Teilaktualisierung der Methodenkonvention 3.1: Kostensätze . Im Zuge der Teilaktualisierung wurden insbesondere die beiden Kapitel zur Emission von Treibhausgasen und Luftschadstoffen überarbeitet: Die hier veröffentlichten Kostensätze basieren auf einem neuen Modell (Treibhausgase) bzw. auf aktualisierten Berechnungen und Annahmen (Luftschadstoffe). Auch in den übrigen Kapiteln wurden die neu ermittelten Kostensätze für Luftschadstoffe und Treibhause berücksichtigt. Abgesehen davon bilden die übrigen Kapitel jedoch weiterhin den Stand der Methodenkonvention 3.1 ab. Für 2025 ist die Veröffentlichung der umfassend überarbeiteten Methodenkonvention 4.0 geplant, welche dann sowohl in Deutsch wie auch in Englisch erscheinen soll. Internalisierung von Umweltkosten Umweltkosten sollten grundsätzlich internalisiert – also den Verursachern angelastet – werden. Da dies bisher nur unzureichend geschieht, gibt es keine hinreichenden wirtschaftlichen Anreize, die Umweltbelastung zu senken. Preise ohne vollständige Internalisierung der Umweltkosten sagen nicht die ökologische Wahrheit. Dies verzerrt den Wettbewerb und hemmt die Entwicklung und Marktdiffusion umweltfreundlicher Techniken und Produkte. Die Umweltkosten müssen vor allem in Bereichen die besonders hohe Umweltschäden verursachen, stärker als bisher in Rechnung gestellt werden. Dies würde beispielsweise den Ausbau der erneuerbaren Energien stärker fördern, die Anreize zur Energieeffizienz erhöhen und wesentlich zu einer nachhaltigen Mobilität beitragen. Aber auch in anderen Bereichen wie beispielsweise der Landwirtschaft und im Baugewerbe würde die Berücksichtigung der Umweltkosten dazu führen, dass nachhaltigere Produktions- und Konsummuster auch wirtschaftlich lohnender werden. Methodik zur Schätzung von Klimakosten Emissionen von Kohlendioxid (CO 2 ) sind der Hauptverursacher des Klimawandels. Das Umweltbundesamt ( UBA ) empfiehlt auf Grundlage der Methodenkonvention für im Jahr 2024 emittierte Treibhausgase einen Kostensatz von 300 Euro 2024 pro Tonne Kohlendioxid (t CO 2 ) zu verwenden (1% Zeitpräferenzrate). Bei einer Gleichgewichtung klimawandelverursachter Wohlfahrtseinbußen heutiger und zukünftiger Generationen (0% Zeitpräferenzrate) ergibt sich ein Kostensatz von 880 Euro 2024 pro Tonne Kohlendioxid. Dabei bezeichnet Euro 2024 jeweils die Kaufkraft des Euro zu Beginn des Jahres 2024. Auch für die Treibhausgase Methan und Lachgas können basierend auf dem Greenhouse Gas Impact Value Estimator (GIVE) Modell Klimakostensätze ermittelt werden, welche in der Tabelle „UBA-Empfehlung zu den Klimakosten“ dargestellt sind. Die Kosten infolge der Emission anderer Treibhausgase können mit Hilfe des Treibhausgaspotenzials (Global Warming Potential) ermittelt werden. Die Schäden, die durch die Treibhausgas -Emissionen entstehen, steigen im Zeitablauf, beispielsweise da der Wert von Gebäuden und Infrastrukturen, die durch Extremwetterereignisse geschädigt werden, steigt. Daher steigen auch die anzusetzenden Kostensätze im Zeitablauf (siehe Tab. „UBA-Empfehlung zu den Klimakosten“). Weitere Erläuterungen hierzu finden Sie in der Methodenkonvention 3.2: Kostensätze (aktuell nur in englischer Sprache verfügbar).
Origin | Count |
---|---|
Bund | 48 |
Europa | 3 |
Land | 7 |
Wissenschaft | 1 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 35 |
Strukturierter Datensatz | 1 |
Text | 15 |
unbekannt | 8 |
License | Count |
---|---|
geschlossen | 20 |
offen | 37 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 37 |
Englisch | 32 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Datei | 2 |
Dokument | 5 |
Keine | 36 |
Unbekannt | 3 |
Webdienst | 2 |
Webseite | 20 |
Topic | Count |
---|---|
Boden | 60 |
Lebewesen & Lebensräume | 60 |
Luft | 60 |
Mensch & Umwelt | 60 |
Wasser | 60 |
Weitere | 60 |