API src

Found 36 results.

Related terms

IUCN Weltnaturschutzkongress auf Hawaii

Der IUCN Weltnaturschutzkongress fand vom 1. bis 10. September 2016 auf Hawaii statt. Der Kongress endete mit den "Hawaii-Vereinbarungen". Die Delegierten einigten sich unter anderem auf ein striktes Verbot des nationalen Elfenbeinhandels. Darüber hinaus soll die besonders in Südafrika verbreitete Zucht von Löwen in Gefangenschaft, die dann als leichte Beute für die Jagd freigegeben werden, die sogenannten "Gatterjagd" ab 2020 verboten werden. Des Weiteren stimmte die Konferenz für ein Verbot der Waljagd zu wissenschaftlichen Zwecken. Die IUCN-Mitglieder forderten außerdem bindende Gesetzesregelungen für den Schutz der hohen See: bis 2030 sollen 30 Prozent aller Meeresgebiete außerhalb von Hoheitsgebieten der Länder unter Schutz gestellt werden. Auch Urwälder und intakte Waldlandschaften sollen zukünftig besser geschützt werden. Die IUCN-Mitglieder wollen sich außerdem dafür einsetzen, dass noch mehr Gebiete zu "no-go-areas" erklärt werden, in denen schädliche industrielle Tätigkeiten wie Bergbau, Öl- und Gasförderung oder Infrastrukturentwicklungen verboten sind. In einer weiteren Entscheidung betonten die IUCN-Mitglieder die Notwendigkeit, intakte Wälder und Ökosysteme vor der industriellen Nutzung als Palmölplantage zu schützen.

Studie belegt rapide Entwaldung Malaysias

Neue Satellitenaufnahmen zeigen, dass in Malaysia der tropische Regenwald mit einer Geschwindigkeit abgeholzt wird wie nirgendwo sonst in Asien. Das geht aus einer am 1. Februar 2011 in Amsterdam veröffentlichten Studie hervor. Demnach ist das Tempo der Entwaldung in Malaysia dreimal so hoch wie in ganz Asien zusammen - und in den Sumpfwäldern im südlichen Sarawak sei es sogar noch höher, heißt es in der von der in den Niederlande ansässigen Organisation Wetlands International erstellten Studie. In Sarawak, dem größten malaysischen Staat auf der Insel Borneo, würden jährlich zwei Prozent des Regenwaldes abgeholzt - in den vergangenen fünf Jahren seien es zehn Prozent der Waldfläche gewesen. In ganz Asien seien es in demselben Zeitraum 2,8 Prozent gewesen. Das meiste gerodete Land wird zu Palmöl-Plantagen, hieß es weiter. Malaysia und Indonesien sind die größten Palmöl-Produzenten der Welt.

Biomasse: Beste Ökobilanz bei Nutzungskaskade

Hemmnisse für stoffliche Biomassenutzung abbauen Bioenergie, insbesondere Biokraftstoffe, werden kontrovers diskutiert – Bietet die stoffliche Nutzung von Biomasse in Form von Baumaterialien, Biokunststoffen oder Schmierstoffen also eine bessere Alternative? Diese Frage wurde jetzt erstmalig umfassend in einem Forschungsprojekt im Auftrag des Umweltbundesamtes (UBA) untersucht. Die Ergebnisse zeigen: Werden nachwachsende Rohstoffe vor einer energetischen Nutzung stofflich genutzt, lassen sich fossile Rohstoffe einsparen, Treibhausgasemissionen vermindern und die Wertschöpfung steigern. So soll Holz in einer längeren Verwertungskette zuerst als Baumaterial oder für die Holzwerkstoffindustrie im Anschluss zum Beispiel für Möbel genutzt werden und erst danach als Holzpellet für die Energiegewinnung. Diese Kaskadennutzung sollte in den Mittelpunkt einer langfristigen Strategie für eine ressourceneffiziente und nachhaltige Biomassenutzung gestellt werden. Holz, Stärke aus Mais und Weizen, Pflanzenöle und Zucker zählen zu den wichtigsten stofflich genutzten biogenen Rohstoffen. Eine verstärkte stoffliche Nutzung nachwachsender Rohstoffe in Deutschland hätte erhebliche ökologische und ökonomische Potentiale  hinsichtlich  Treibhausgasminderung, Wertschöpfung und Beschäftigung, so die Projektergebnisse aus den Szenarien. In diesen wurde angenommen, dass die in Deutschland bisher energetisch genutzte ⁠ Biomasse ⁠ in Gänze stofflich genutzt wird. Ökobilanzen zeigen, dass die stoffliche Nutzung von Biomasse viele Parallelen zur energetischen Biomassenutzung hat, allerdings ist die Kaskadennutzung des Rohstoffs, bei der sich die energetische an die stoffliche Nutzung anschließt, einer rein energetischen Nutzung weit überlegen. Auch ökonomisch hat die stoffliche Nutzung Vorteile. Sie schafft, bezogen auf die gleiche Menge an Biomasse, die fünf- bis zehnfache Bruttowertschöpfung und ebensolche Beschäftigungseffekte. Hauptgrund sind die meist langen und komplexen Wertschöpfungsketten. Die stoffliche Biomassenutzung wird derzeit nicht finanziell gefördert.  Gegenüber der energetischen Biomassenutzung ist sie deshalb kaum wettbewerbsfähig. Verschiedenste Programme und gesetzliche Regelungen begünstigen den Anbau von Energiepflanzen, deren Verarbeitung und direkten Einsatz zur Energiegewinnung – unter anderem durch Steuervorteile. Das steigert die Nachfrage nach Biomasse und folglich deren Preis, was wiederum höhere Pacht- und Bodenpreise nach sich zieht. Eine ökologisch und ökonomisch sinnvolle Kaskadennutzung wird so verhindert. Bei dieser würde Holz in einer längeren Recyclingkette idealerweise zuerst als Baumaterial, dann für Spanplatten, im Anschluss für Möbel und danach für kleine Möbel wie Regale genutzt werden.  Erst dann, wenn es sich nicht mehr für Holzprodukte eignet, kann es auch für die Energiegewinnung eingesetzt werden. ⁠ UBA ⁠-Vizepräsident Thomas Holzmann: „Die beste Form Biomasse einzusetzen, ist die Kaskadennutzung.  Holz oder andere pflanzliche Stoffe sollen so lange wie möglich stofflich genutzt werden, für Bauholz oder Möbel und anschließend für neue Produkte recycelt werden. Erst die Rest- und Abfallstoffe dürfen für die Energiegewinnung eingesetzt werden. Das Umweltbundesamt empfiehlt daher, vergleichbare Rahmenbedingungen für stoffliche und energetische Biomassenutzung zu schaffen und den Ausbau der Kaskadennutzung voranzutreiben. Das ist die optimale, ressourceneffizienteste Verwertung der Biomasse.“ Die  bestehenden Wettbewerbsverzerrungen zuungunsten der stofflichen Nutzung von Biomasse lassen sich durch unterschiedliche Maßnahmen verringern. Beispielsweise sollte in der Erneuerbaren-Energie-Richtlinie der EU (RED) und im Erneuerbaren-Energien-Gesetz (EEG) die Kaskadennutzung deutlich besser gestellt werden als die direkte energetische Nutzung frischer Biomasse. Ein weiteres Beispiel ist das Marktanreizprogramm (MAP) für Erneuerbare Energien, das die Wärmeerzeugung durch Biomasseanlagen fördert. Würde diese Förderung schrittweise gekürzt werden und würde dadurch die Nachfrage nach Scheitholz-, Hackschnitzel- und Pelletheizungen sinken, ließe sich die Konkurrenz um Holz zwischen dem stofflichen und energetischen Sektor deutlich entschärfen. Um das zu erreichen, sollte auch die Umsatzsteuer für Brennholz erhöht werden. Sie liegt derzeit bei einem reduzierten Satz  von sieben Prozent. In Deutschland werden derzeit etwa 90 Millionen Tonnen an nachwachsenden Rohstoffen genutzt. Knapp die Hälfte davon (52 %) wird stofflich genutzt, die andere Hälfte (48 %) energetisch. Mengenmäßig ist Holz der wichtigste nachwachsende Rohstoff. Es wird in der Säge- und Holzwerkstoffindustrie eingesetzt, als Bauholz für Gebäude oder die Möbelproduktion sowie in der Papier- und Zellstoffindustrie. Die Oleochemie und die chemische Industrie verarbeiten Pflanzenöle, z.B. zu Farben, Lacken und zu Schmierstoffen sowie stärke- und zuckerhaltige Pflanzen zu Tensiden und biobasierten Kunststoffen. Die Anbaufläche für nachwachsende Rohstoffen, die stofflich genutzt werden, beläuft sich weltweit auf 2,15 Milliarden Hektar. Am meisten wird Holz angebaut, die Stärkepflanzen Mais und Weizen, die Ölpflanzen Ölpalme und Kokosnuss, das Zuckerrohr sowie Baumwolle und Naturkautschuk. Weitere Informationen: Das Forschungsprojekt „Ökologische Innovationspolitik – Mehr Ressourceneffizienz und ⁠ Klimaschutz ⁠ durch nachhaltige stoffliche Nutzungen von Biomasse“ wurde im Auftrag des Umweltbundesamtes  durchgeführt und mit Mitteln des Bundesumweltministeriums (⁠ BMUB ⁠) gefördert. Das Projekt wurde unter Federführung der nova-Institut GmbH, Hürth, in Kooperation mit weiteren Partnern von 2010 bis 2013 bearbeitet. F+E Ökologische Innovationspolitik – Mehr Ressourceneffizienz und Klimaschutz durch nachhaltige stoffliche Nutzungen von Biomasse (FKZ 37 1093 109). Der Forschungsbericht kann unter der Kennnummer 001865 aus der Bibliothek des Umweltbundesamtes ausgeliehen werden.

Kraftstoffe und Antriebe

Kraftstoffe und Antriebe Im Straßen-, Schiffs- und Flugverkehr dominieren immer noch klimaschädliche fossile Kraftstoffe. Zunehmend kommen jedoch auch klimafreundlichere alternative Kraftstoffe und Antriebe zum Einsatz. Im Bereich der Treibhausgasminderung bei Kraftstoffen ist das UBA im Rahmen der 37. und 38. Bundes-Immissionsschutzverordnung (BImSchV) auch für den Vollzug zuständig. Unsere Mobilität basiert zurzeit zu großen Teilen auf der Verbrennung flüssiger Kraftstoffe in Verbrennungskraftmaschinen. Da das ⁠ Verkehrsaufkommen ⁠ in Deutschland stetig wächst, stagnieren trotz vorhandener Effizienzgewinne durch den Einsatz von moderneren Motoren und Flugzeugturbinen die absoluten Treibhausgasemissionen des Verkehrs auf einem hohen Niveau. Für die notwendige deutliche Reduktion der Treibhausgasemissionen des Verkehrs für einen ausreichenden Klimaschutzbeitrag des Verkehrs sind neben weiteren Effizienzverbesserungen bei Motoren und einer weitreichenden Elektrifizierung des Straßenverkehrs auch ein Umstieg auf nachhaltige alternative Kraftstoffe in der Schifffahrt und der Luftfahrt notwendig. Konventionelle Kraftstoffe Bei konventionellen Kraftstoffen handelt es sich um Mineralölprodukte. Im Jahr 2019 entfielen ca. 94 Prozent des Endenergieverbrauchs im Verkehrssektor auf diese Kraftstoffe. Die dominierenden Kraftstoffe im deutschen Verkehrssektor sind die im Straßenverkehr eingesetzten Diesel- und Ottokraftstoffe. Ottokraftstoff wird unter dem Namen E5 oder E10 vermarktet und bezeichnet Benzin, das einen bestimmten Anteil an Ethanol enthalten darf. Während "E" für Ethanol steht, gibt die Zahl "5", beziehungsweise "10" an, wieviel Prozent Ethanol das Benzin maximal enthalten kann. Bei dem im Benzin typischerweise enthaltenen Ethanol handelt es sich um biogen bereitgestelltes Ethanol – kurz Bioethanol – das hauptsächlich aus zucker- und stärkehaltigen Pflanzen wie Zuckerrohr, Zuckerrübe, Getreide und Mais Pflanzen gewonnen wird. Die Mindestanforderungen für Ottokraftstoffe sind in der Norm DIN EN 228 festgeschrieben. Im weiteren Sinne sind alle Kraftstoffe, die in Ottomotoren genutzt werden können, Ottokraftstoffe, also unter anderem auch Flüssiggas (LPG) bzw. Erdgas (CNG). Bei diesen handelt es sich zwar nicht um Mineralölprodukte, jedoch werden sie hauptsächlich fossil hergestellt. Da beide keine typischen Kraftstoffe sind, werden diese oft den „alternativen Kraftstoffen“ zugeordnet. Dieselkraftstoff – auch vereinfacht Diesel genannt – wird nach den in der Norm DIN EN 590 definierten Mindestanforderungen an Tankstellen unter dem Namen B7 geführt und bezeichnet Diesel aus Mineralöl mit einer Beimischung von maximal sieben Prozent Biodiesel. In Deutschland wird Biodiesel vorwiegend aus Rapsöl hergestellt. Der Großteil des Biodiesels wird jedoch importiert und aus Abfall- und Reststoffen sowie aus Palmöl sowie Rapsöl hergestellt. Palmöl als Ausgangstoff für hydrierte Pflanzenöle (HVO - Hydrogenated Vegetable Oils) spielt im Bereich des Dieselkraftstoffes zumindest für das Jahr 2020 auch eine entscheidende Rolle. Durch die Überarbeitung der Treibhausgasminderungsquote (THG-Quote) ist die Verwendung von Palmöl seit dem 1. Januar Jahr 2022 deutlich beschränkt und ab 2023 beendet, da der Anbau von Ölpalmen einer der Haupttreiber für die Rodung von Regenwald ist. Im Flugverkehr wird größtenteils aus Erdöl hergestelltes Kerosin getankt. Kerosin bezeichnet Kraftstoffe, die sich für den Einsatz in Flugturbinen eignen. In der Binnenschifffahrt wird schwefelreduzierter Binnenschiffsdiesel verwendet. In der Seeschifffahrt kommen Marinediesel- und Marinegasöle sowie Schweröle mit unterschiedlichem Schwefelgehalt und ggf. notwendigen Abgasnachbehandlungssystemen (Kraftstoffnorm: ISO 8217) zum Einsatz. Sowohl im Binnen- als auch im Seeverkehr werden mehr und mehr Schiffe mit Flüssigerdgas (⁠ LNG ⁠ – Liquified Natural Gas) oder – in ersten Modellanwendungen – mit LPG (Liquified Petroleum Gas), auch Autogas genannt, Methanol oder Biodiesel betrieben. Mehr Informationen hierzu finden Sie auf unserer Themenseite zur Seeschifffahrt. Nur durch den Ersatz von mineralölbasierten Kraftstoffen durch klimafreundliche Alternativen kann der Verkehrssektor den notwendigen Beitrag zur Senkung seiner Treibhausgasemissionen leisten. Um diese Energiewende im Verkehr zu erreichen, ist die Entwicklung und Innovation bei alternativen Antriebstechnologien von zentraler Bedeutung. Perspektivisch sollte Strom aus erneuerbaren Energiequellen zur Energieversorgung im Verkehr direkt genutzt werden, d. h. ohne weitere Umwandlungsschritte zu strombasierten Kraftstoffen, sofern dies, wie etwa im Pkw-Verkehr, technisch möglich ist. Alternative Kraftstoffe Alternative Kraftstoffe sind entweder bezüglich der Bereitstellung alternativ, also "biogen" oder "synthetisch", oder es handelt sich um andere Kraftstoffe als Alternative zu Benzin oder Diesel. Biogene Kraftstoffe, oder auch Biokraftstoffe, werden vor allem aus Pflanzen, Pflanzenresten und ‑abfällen oder Gülle gewonnen. Synthetische Kraftstoffe unterscheiden sich von konventionellen Kraftstoffen durch ein geändertes Herstellungsverfahren und oft auch durch andere Ausgangsstoffe als Mineralöl. Biokraftstoffe wie Bioethanol oder Biodiesel leisten bereits seit vielen Jahren einen Beitrag zur Minderung der Treibhausgasemissionen des Verkehrssektors. Biokraftstoffe sind entweder flüssige (zum Beispiel Ethanol und Biodiesel) oder gasförmige (Biomethan) Kraftstoffe, die aus ⁠ Biomasse ⁠ hergestellt werden und für den Betrieb von Verbrennungsmotoren in Fahrzeugen bestimmt sind. Man unterscheidet Biokraftstoffe der ersten und zweiten Generation, wobei eine klare Abgrenzung der Kraftstoffe beider Generationen schwierig ist. Bei der Erzeugung von Biokraftstoffen der ersten Generation wird nur die Frucht (Öl, Zucker, Stärke) genutzt, während ein Großteil der Pflanze als Futtermittel Verwendung finden kann. Biokraftstoffe der zweiten Generation sind noch in der Entwicklung und werden aus Pflanzenmaterial hergestellt, das nicht als Nahrung verwendet werden kann, zum Beispiel aus Ernteabfällen, Abfällen aus der Landwirtschaft oder Siedlungsmüll. Zu dieser Generation, dessen Vertreter auch „fortgeschrittene Biokraftstoffe“ genannt werden, gehört auch solches Bioethanol, das aus zellulosehaltigen Materialien wie Stroh oder Holz gewonnen wird. Generelle Informationen zur energetischen Nutzung von Biomasse und zu den Nachhaltigkeitsanforderungen sind auf unserer UBA-Themenseite zur Bioenergie zusammengestellt. Synthetische Kraftstoffe sind Kraftstoffe, die durch chemische Verfahren hergestellt werden und bei denen, im Vergleich zu konventionellen Kraftstoffen, die Rohstoffquelle Mineralöl durch andere Energieträger ersetzt wird. XtL-Kraftstoffe sind synthetische Kraftstoffe, die ähnliche Eigenschaften und chemische Zusammensetzungen wie konventionelle Kraftstoffe aufweisen. Sie entstehen durch die Umwandlung eines Energieträgers zu einem kohlenstoffhaltigen Kraftstoff, der unter Normalbedingungen flüssig ist. Das "X" wird in dieser Schreibweise durch eine Abkürzung des ursprünglichen Energieträgers ausgetauscht. "tL" steht für "to Liquid". Aktuell sind in dieser Schreibweise die Abkürzungen GtL (Gas-to-Liquid) bei der Verwendung von Erdgas beziehungsweise Biogas, BtL (Biomass-to-Liquid) bei der Verwendung von Biomasse und CtL (Coal-to-Liquid) bei der Verwendung von Kohle als Ausgangsenergieträger gebräuchlich. Zur Herstellung von Power-to-X (Power-to-Gas/⁠ PtG ⁠ oder ⁠ PtL ⁠)-Kraftstoffen wird Wasser unter Einsatz von Strom in Wasserstoff und Sauerstoff aufgespalten. In einem Folgeschritt kann der gewonnene Wasserstoff in Verbindung mit anderen Komponenten – hier vor allem Kohlenstoffdioxid – zu Methan (PtG-Methan) oder flüssigem Kraftstoff (PtL) verarbeitet werden. Der gewonnene Wasserstoff (PtG-Wasserstoff) kann jedoch auch direkt als Energieträger im Verkehr, zum Beispiel in Brennstoffzellen-Fahrzeugen genutzt werden. Mehr Informationen hierzu finden Sie in den vom UBA beantworteten „Häufig gestellten Fragen zu Wasserstoff im Verkehr“ . Elektrischer Antrieb: Strom als Energieversorgungsoption Energetisch betrachtet, ist der Einsatz von ⁠ PtG ⁠-Wasserstoff in Brennstoffzellen-Pkw bzw. von ⁠PtG⁠-Methan und PtL⁠ in Verbrennungsmotoren von Pkw hochgradig ineffizient. Für dieselbe ⁠ Fahrleistung ⁠ muss etwa die drei- beziehungsweise sechsfache Menge an Strom im Vergleich zu einem Elektro-Pkw eingesetzt werden, wie die folgende Abbildung veranschaulicht. Da erneuerbarer Strom, beispielsweise aus Wind und Photovoltaik, und die notwendigen Ressourcenbedarfe für die Energieanlagen nicht unbegrenzt zur Verfügung stehen, muss auch mit erneuerbaren Energien sparsam umgegangen werden. Am effizientesten ist die direkte Stromnutzung im Verkehr, beispielsweise über Oberleitungen für Bahnen. Ähnlich effizient ist die Stromnutzung über batterieelektrisch betriebene Fahrzeuge. Deswegen sollte zur möglichst effizienten Defossilisierung des Straßenverkehrs ein weitgehender Umstieg auf batterieelektrisch betriebene Fahrzeuge angestrebt werden, wo immer dies technisch möglich ist. Vollzugsaufgaben des UBA zur 38. BImSchV In Deutschland sind Inverkehrbringer von Kraftstoffen gesetzlich verpflichtet, den Ausstoß von Treibhausgasen (THG) durch die von ihnen in Verkehr gebrachten Kraftstoffe um einen bestimmten Prozentsatz zu mindern. Dies regelt die im seit 1. Januar 2022 gültigen Gesetz zur Weiterentwicklung der Treibhausgasminderungsquote festgeschriebene THG‑Quote. Im Rahmen der THG-Quote hat das Umweltbundesamt (⁠ UBA ⁠) verschiedene Vollzugsaufgaben. Eine Aufgabe regelt die Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen (38. ⁠ BImSchV ⁠): Das UBA bescheinigt auf Antrag Strommengen, die im Straßenverkehr genutzt wurden. Weitere Informationen finden Sie auf der entsprechenden Themenseite zur 38. BImSchV .

Nachhaltiges Palmöl – Probleme und Lösungsansätze

Nachhaltiges Palmöl – Probleme und Lösungsansätze Die Produktion von Palmöl geht häufig mit massiver Umweltzerstörung und der Verletzung von Menschenrechten einher. Die Nachfrage nach nachhaltigem Palmöl in Produktion und Konsum ist nur schwer zu bedienen. Das Umweltbundesamt hat Initiativen näher betrachten lassen, die mehr Transparenz schaffen sollen, um Nachhaltigkeit sichtbar zu machen. Die Studie hat Verbesserungsbedarfe identifiziert. Anhand einer Desktopanalyse und Literaturrecherche wurde im Auftrag des Umweltbundesamtes (⁠ UBA ⁠) eine Situationsanalyse der Palmölherstellung und den verbundenen Lieferketten erstellt. Diese skizziert die wesentlichen Treibergrößen für die problematischen Entwicklungen bei der Produktion und dem Handel von Palmöl. Zudem wurden sowohl Nachhaltigkeitsinitiativen und gesetzliche Regelungen als auch Akteure des Palmölsektors identifiziert. Perspektiven und Positionen der unterschiedlichen Akteursgruppen wurden beleuchtet. Die Ist-Darstellung wurde ergänzt durch eine kritische Analyse der Wirkungen existierender Zertifizierungssysteme. Um in Zukunft nachhaltige Produktionsweisen für Palmöl zu ermöglichen wurden in der Studie „Konsumentenorientierte Ansätze einer nachhaltigen Bereitstellung von Palmöl“ folgende Handlungsprämissen und Leitfragen abgeleitet: ► Agroforstsystem für Ölpalmen sollten weiter untersucht und gefördert werden. Dabei müssen sowohl die finanziellen Vorteile für die Kleinbauern als auch die soziale Akzeptanz und Maßnahmen für die Renaturierung sowie den Erhalt bestehender Ökosysteme berücksichtigt werden. ► Schaffung wirtschaftlicher Anreizstrukturen für eine diversere sozial-ökologisch ausgerichtete Palmöl-Mosaik-Landschaft durch gut konzipierte politische Maßnahmen. ► Gesamtverbrauchsreduktion von Palmöl in Kombination mit dem Ende von Palmöl als Biokraftstoff. Ein Hintergrundpapier gibt Fallbeispiele der öffentlichen Beschaffung in Deutschland auf Bundes-, Länder- und kommunaler Ebene an, und zeigt Hürden auf, die der Integration von Nachhaltigkeitsanforderungen in der Praxis aktuell noch entgegenstehen. ► Wie kann Partizipation so gelingen, dass bestehende Machtstrukturen durchbrochen und nachhaltige Lösungen gefunden werden? ► Zertifizierung braucht gesetzliche Verbindlichkeit mit neuen, strengeren Regeln und unabhängig konzipierten, wirksamen Kontrollen und Sanktionen und kann in ihrer jetzigen Form nur ein kleiner Baustein in der notwendigen Transformation der Palmölproduktion sein. Die Ergebnisse machen deutlich, dass weiterhin großer Handlungsbedarf für nachhaltige Verbesserungen in der Produktion und dem Konsum von Palmöl besteht. Das UBA setzt sich auf verschiedenen Ebenen der Politikberatung, der Zertifizierung und Aufklärung dafür ein.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von GEA Westfalia Separator Group GmbH durchgeführt. Ziel ist es, ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen. Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösungsmittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierter Materialien) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozeßschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozesschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs-und Industriepartner in Deutschland.

Teilprojekt 4

Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von PlanET Biogastechnik GmbH durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Palmöl ist das weltweit kostengünstigste und wichtigste Pflanzenöl, wobei die Umstände seiner Produktion sehr problematisch sind. In großem Maße verdrängen Monokulturen tropische Wälder und es entstehen enorme Mengen flüssiger und solider Abfälle. Ein Abfallprodukt sind die abgeernteten Fruchtstände der Ölpalmen(Empty Fruit Bunches, EFB) wovon allein in Malaysia 20 Mio. t pro Jahr anfallen. Pathwayy-EFB entwickelt als interdisziplinäres transnationales Verbundprojekt einen Prozess zur Herstellung monomerer Zucker aus dem Cellulose-Bestandteil der EFB. Diese können dann zu Bio-Kraftstoffen oder Bio-Chemikalien der zweiten Generation weiterverarbeitet werden. Auf dem Gelände einer Palmöl-Mühle wird dazu im ersten Schritt EFB vorbehandelt. Dadurch wird der Cellulose-Bestandteil der Biomasse für einen enzymatischen Angriff verfügbar. Im zweiten Schritt wird die Cellulose dann mithilfe sogenannter Cellulase-Enzyme in seine Zucker-Bestandteile aufgespalten. Anstelle freier, löslicher Enzyme (Marktstandard) kommt eine bakterielle Cell Surface Display Technologie zum Einsatz, welche die Wiederverwendbarkeit der Enzyme ermöglicht. Die Autodisplay Biotech GmbH wird den hierzu notwendigen Ganzzellkatalysator entwickeln, während die Biomassevorbehandlung von der Universiti Kebangsaan Malaysia erarbeitet wird. Basierend auf diesen Ergebnissen erfolgt hierzu bei Fraunhofer UMSICHT die Prozessentwicklung im Labormaßstab. Der Fokus bei der Entwicklung eines Verfahrens liegt dabei auf der Produktabtrennung und -aufbereitung sowie der gleichzeitigen Katalysatorrückgewinnung und -rückführung. Basierend auf den erzielten Ergebnissen erfolgt daran anschließend die Umsetzung im Pilotmaßstab. Parallel zu diesen Arbeiten werden Untersuchungen zu Wirtschaftlichkeit, Nachhaltigkeit und sozialen Auswirkungen ebenfalls von Fraunhofer UMSICHT durchgeführt.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Autodisplay Biotech GmbH durchgeführt. Palmöl ist das weltweit kostengünstigste und wichtigste Pflanzenöl, wobei die Umstände seiner Produktion sehr problembelastet sind. In großem Maße verdrängen Monokulturen tropische Wälder und es entstehen enorme Mengen flüssiger und solider Abfälle. Ein Abfallprodukt sind die abgeernteten Fruchtstände der Ölpalmen (Empty Fruit Bunches, EFB), wovon allein in Malaysia 20 Mio. t pro Jahr anfallen. Pathway-EFB entwickelt als interdisziplinäres, transnationales Verbundprojekt einen Prozess zur Herstellung monomerer Zucker aus dem Cellulose-Bestandteil der EFB. Diese können dann zu Bio-Kraftstoffen oder Bio-Chemikalien der zweiten Generation weiterverarbeitet werden. Auf dem Gelände einer Palmöl-Mühle wird dazu im ersten Schritt EFB vorbehandelt. Dadurch wird der Cellulose-Bestandteil der Biomasse für einen enzymatischen Angriff verfügbar. Im zweiten Schritt wird die Cellulose dann mithilfe so genannter Cellulase-Enzyme in seine Zucker-Bestandteile aufgespalten. Anstelle freier, löslicher Enzyme (Marktstandard) kommt eine bakterielle Cell Surface Display Technologie zum Einsatz, welche die Wiederverwendbarkeit der Enzyme ermöglicht. Die Autodisplay Biotech GmbH wird Ganzzellkatalysatoren konstruieren und diejenigen auswählen welche die höchste Aktivität gegenüber dem Substrat EFB aufweisen. Die Enzyme werden hinsichtlich ihrer Eigenschaften evolutiv weiterentwickelt und die Produktion der resultierenden Ganzzellkatalysatoren wird optimiert.

1 2 3 4