Durch die, im Golfkrieg von 1991, vom irakischen Aggressor mutwillig freigesetzten 1-6 Mio. t. Rohöl, wurden zahlreiche Küstenabschnitte an der saudiarabischen Küste verschmutzt. Die Lebewelt vieler Strand- und Intertidalbereiche wurde weitgehend vernichtet. Wissenschaftler aus Europa und Saudi Arabien untersuchten im Rahmen eines von der EU geförderten Projekts von 1992-1995 die Folgen der Katastrophe auf die Ökosysteme. Seit 1995 wurden keine weiteren Untersuchungen durchgeführt. Bei einer Reise im März 1999 konnte der Antragsteller an verschiedenen Strandabschnitten unter frischen Sedimenten (welche die Küste optisch voll regeneriert erscheinen lassen) noch beachtliche Teer- und Ölrückstände feststellen. In einigen Salzmarschbereichen findet erst jetzt eine zaghafte Kolonisierung von Krabben und Halophyten statt. Aufgrund der ausgezeichneten Dokumentation durch das EU-Projekt (der Antragsteller war daran beteiligt und hat daher zu allen Berichten Zugang) könnte durch erneute Untersuchungen 10 Jahre nach der Katastrophe die Regeneration, welche offensichtlich bei weitem noch nicht abgeschlossen ist, langfristig dokumentiert werden. Eine solche Studie würde erheblich zum besseren Verständnis von Regenerationsmechanismen in Abhängigkeit von verschiedenen Küstenökosystemen am Arabischen Golf beitragen.
Die Herstellung von Kernen nach dem Cold-Box-Verfahren ist energiesparender als die anderen Verfahren. Durch technische Verfahrensaenderungen soll der Amineinsatz minimiert werden. Zur Vermeidung von Belaestigungen muessen geeignete Massnahmen zur Ablufterfassung und -reinigung getroffen werden.
Spaltung und Extraktion von aromatischen Aminen aus Azofarbstoffen auf Textilien; Bestimmung bestimmter kanzerogener Verbindungen
Die Trennung von Lanthanoiden und Actinoiden ist ein wichtiges technisches Problem und darüber hinaus von großem wissenschaftlichem Interesse. Dies vor allem darum, weil sich die dreiwertigen Actinoiden und Lanthanoiden in ihrem Komplexierungsverhalten sehr ähnlich sind. In den letzten Jahren hat sich gezeigt, dass die leicht erhöhte Weichheit der Actinoiden und damit der erhöhte kovalente Charakter der Actinoiden-Donoren Bindungen der wichtigste Unterschied in bezug auf selektive Komplexierungen ist. Für technische Anwendungen kommen praktisch nur Extraktionen aus stark sauren wässrigen Lösungen (HNO3) in organische Phasen mit mehrzähnigen Aminen in Frage. Im Projekt sollen sechszähnige Liganden mit dem Bispidingerüst synthetisiert und untersucht werden. Molekulares Modellieren soll zur Optimierung der Liganden verwendet werden, und die Derivate sollen auch in bezug auf ihre Löslichkeiten und die Protonisierungskonstanten optimiert werden.
Amine sind wichtige, aber wenig untersuchte organische Bestandteile in der marinen Atmosphäre. Es gibt deutliche Hinweise, dass innerhalb der marinen Grenzschicht die Bildung neuer Aerosolpartikel und die Zunahme der Partikelmasse durch Amine beeinflusst wird. Allerdings existieren noch sehr hohe Unsicherheiten in Bezug auf die Quellen, die weiteren chemischen Reaktionen innerhalb des chemischen Mehrphasensystems der marinen Atmosphäre und der Beitrag zur marinen Aerosolmasse. Ein tieferes Verständnis der durch die Amine initialisierten Bildung des organischen Stickstoffes in marinen Aerosolpartikeln, sowie der potentiell oxidationsgesteuerten Emission von Aminen aus den Ozeanen in die Atmosphäre, erfordert grundlegende mechanistische Modellierungsstudien der Mehrphasenoxidation von Aminen in Kombination mit speziellen Feldmessungen. Solche Ansätze sind derzeit nicht vorhanden, da noch keine detaillierten Mechanismen- oder Modellierungsstudien zur Mehrphasenoxidation der Amine durchgeführt wurden.Das Ziel von ORIGAMY ist es, die Faktoren zu ermitteln, die die Emission von Aminen aus dem Ozean in die Atmosphäre beeinflussen und deren Auswirkungen auf die organische Aerosolmasse, den Aerosolsäuregehalt und die Bildung neuer Aerosolpartikel. Wir wollen die großen Wissenslücken bezüglich Quellen, Phasenverteilung und Oxidationsprozessen von Aminen in der marinen Grenzschicht schließen, indem wir spezielle neue Feldmessungen in Kombination mit neuartigen Modellierungsansätzen der Mehrphasenchemie anwenden. Die Kombination aus Feldmessungen, Emissionsmodellierung und Modellierung der chemischen Alterung der Amine zum Verständnis der Feldergebnisse ist dabei eine neue große innovative Leistung, die aus dieser Studie resultieren wird.Die Ergebnisse von ORIGAMY werden eine wichtige Grundlage schaffen, um die Bedeutung der Amine und deren weiteren chemischen Reaktionen in der marinen Grenzschicht zu erfassen. Weiterhin tragen diese Ergebnisse dazu bei, relevante atmosphärischen Prozesse der Amine zu identifizieren, die in höher-skalige Modellen implementiert werden müssen.
Das Forschungsvorhaben soll beitragen zur Rekonstruktion der pleistozänen und holozänen Landschafts- und Klimageschichte des Muksu-Tals bis hinauf zum Fedtschenkogletschers im Pamir-Gebirge, sowie jener der umgebenden Täler wie Sauksay und Balandkijk. Insbesondere interessiert uns die Klärung offener Fragen bezüglich (i) des Ausmaßes der jüngeren Schwankungen der Fedtschenkogletscherzunge (ii) der Lage der tiefsten Eisrandlagen und (iii) des Nachweises mehrerer weit ins Tal reichender spätpleistozäner Gletschervorstöße. Hierzu werden verschiedene Methoden der absoluten und relativen Alterdatierung von glazialen Ablagerungen eingesetzt wie Radiocarbonanalysen, Thermolumineszenzanalysen, Bestimmung kosmogener Nuklide sowie glazialmorphologische, bodengeographische, pollenanalytische, dendrochronologische und lichenometrische Untersuchungen. Umfangreiche Erfahrungen aus den dem Pamir nördlich angrenzenden Gebieten (NW-Tienshan, Alai-Kette und Hissar-Gebirge) zeigen, daß dieser Ansatz gut geeignet ist zur Gliederung der holozönen und spätpleistozänen Vergletscherung in den genannten zentralasiatischen Gebirge. Zudem konnten wir interglaziale Bodenbildungen nachweisen und fanden Hinweise auf eine intensive mittelpleistozäne Vergletscherung.
Etwa die Hälfte der weltweiten Primärproduktion erfolgt durch Phytoplankton und dessen Jäger-Beute-Interaktionen mit Zooplankton bilden die Grundlage der gesamten ozeanischen Nahrungskette. Die chemischen Signale, die diese Interaktionen vermitteln, sind bisher größtenteils unbekannt. Vor kurzem konnte die Arbeitsgruppe von Erik Selander erstmals eine Gruppe solcher chemischer Signale identifizieren, die Copepodamide. Copepodamide spielen eine entscheidende Rolle in der Interaktion von Ruderfußkebsen (Copepoda) als marine, zooplanktonische Räuber mit verschiedenen Phytoplanktonspezies, wie der Gattung Alexandrium, welche an der Entstehung der schädlichen Algenblüte beteiligt ist. Die vollständige Funktion von Copepodamiden und deren Wahrnehmung durch Phytoplankton ist jedoch noch weitestgehend unbekannt. Das geplante Forschungsprojekt konzentriert sich auf zwei Hauptziele. Das erste Ziel ist die Identifizierung weiterer, neuer Copepodamide und die Untersuchung spezifischer Copepodamidmuster in verschieden Copepodspezies. Für diesen Zweck ist die Anwendung eines breiten Spektrums chemischer Separations- und Detektionstechniken geplant. Das gastgebende Institut besitzt dazu eine einmalige Kombination aus Ausrüstung, Ausstattung und Wissen um dieses Projekt zu unterstützen und ermöglicht ein tiefgreifendes Training in chemischer Ökologie und NMR-Techniken. Das zweite Ziel ist die Identifikation von Copepodamid-Rezeptorproteinen in den Phytoplanktonspezies Alexandrium tamarense und Skeletonema marioni. Dazu soll zum einen in Kooperation mit der Arbeitsgruppe von Julia Kubanek (Georgia Tech, Atlanta, USA) eine Kombination aus zell-basierten Assays und Elektrophysiologie angewendet werden. Um diese Methoden zu erlernen, ist ein Besuch der Arbeitsgruppe von Julia Kubanek vorgesehen. Des Weiteren sollen Phagen-Display und Protein-Affinitäts-Chromatografie angewendet werden, um die Copepodamid-Rezeptorproteine sowie deren genomische Sequenz zu identifizieren.Die Jäger-Beute-Interaktionen zwischen Zooplankton und Phytoplankton sind von entscheidender Bedeutung für das ökologische Gleichgewicht der Ozeane. Vornehmlich werden diese Interaktionen durch chemische Signale reguliert. Die Identifizierung dieser Signale sowie der entsprechenden Rezeptoren liefert einen entscheidenden Beitrag zum Verständnis planktonischer Interaktionen. Zudem hat das geplante Forschungsprojekt das Potential als ein Meilenstein bei der Entschlüsselung der einflussreichen, bisher jedoch unbekannter, chemischer Sprache der Ozeane zu dienen.
| Origin | Count |
|---|---|
| Bund | 911 |
| Kommune | 5 |
| Land | 53 |
| Wissenschaft | 5 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Chemische Verbindung | 673 |
| Daten und Messstellen | 49 |
| Ereignis | 2 |
| Förderprogramm | 224 |
| Gesetzestext | 462 |
| Text | 14 |
| Umweltprüfung | 3 |
| unbekannt | 7 |
| License | Count |
|---|---|
| geschlossen | 686 |
| offen | 281 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 947 |
| Englisch | 37 |
| Resource type | Count |
|---|---|
| Archiv | 50 |
| Datei | 6 |
| Dokument | 10 |
| Keine | 835 |
| Webdienst | 1 |
| Webseite | 126 |
| Topic | Count |
|---|---|
| Boden | 224 |
| Lebewesen und Lebensräume | 229 |
| Luft | 188 |
| Mensch und Umwelt | 970 |
| Wasser | 193 |
| Weitere | 326 |