Um die klimafreundliche Nutzung von biogenen Rest- und Abfallstoffen langfristig sicher zu stellen und den Anforderungen aus der Luftreinhaltung gerecht zu werden, müssen neue Techniken erprobt werden, welche eine deutliche Minderung der in den Rauchgasen enthaltenen Schadstoffe erzielen. In dem Verbundvorhaben DeNOx-DePM soll eine kombinierte Emissionsminderung der Abgaskomponenten NOx und Feinstaub für Biomassefeuerungen, welche unter die 44. BImSchV fallen, erreicht werden. Dabei soll ein innovatives Rauchgasreinigungssystem, bestehend aus einem angepassten Gewebefilter mit Filterkerzen aus Edelstahlgewebe und der Zugabe von katalytisch wirksamen Additiven, entwickelt werden. Das Verfahren soll zunächst im Labor entwickelt, danach im Technikumsmaßstab erprobt und abschließen praxisnah an einem Holzheizkraftwerk untersucht werden. Durch die Zugabe eines Additivs (Precoat) in das Rauchgas vor dem Staubabscheider kann eine verbesserte Partikelabscheidung auf dem Gewebefilter durch den zusätzlich erzeugten Filterkuchen erreicht und die Abscheideeffizienz für Feinstäube gesteigert werden. Zusätzlich soll das Additiv durch ein mikrowellengestütztes Beschichtungsverfahren mit bereits bei niedrigeren Betriebstemperaturen katalytisch wirksamen Komponenten aktiviert werden. Dadurch soll neben der verbesserten Staubabscheidung auch eine katalytische Stickstoffoxidreduktion unter zusätzlicher Zugabe des Reduktionsmittels Ammoniak realisiert werden. Untersucht werden soll neben der reinen Entstickung mit katalytischen Additiven am Filter auch eine Kombination aus Entstickung im Feuerraum (SNCR) und Nutzung des Ammoniak-Schlupfs am Filter für deutlich niedrigere Emissionen. Darüber hinaus wird das System auch ökonomisch und ökologisch im Hinblick auf seine Wettbewerbsfähigkeit und potentiellen Emissionsminderung untersucht und eingeordnet.
Im Projekt 'Modulare Bioenergie' (ModBioEn) wird eine Pilotanlage einer containerbasierten Biogasanlage errichtet. Diese basiert auf den Vorarbeiten von zwei renommierten Forschungseinrichtungen: dem Fraunhofer IKTS und der Hochschule Zittau/Görlitz (HSZG). An der HSZG wurde in den vergangenen vier Jahren eine Hochleistungsbiogasanlage mit Festbett entwickelt. Die entstandene Technikumsanlage wird in Containerbauform gebracht und in eine Pilotanlage überführt. Das Fraunhofer IKTS stellt zusätzlich zwei entwickelte Komponenten in Containerform bereit; die Substrataufbereitung und die Gasreinigung. Die am IKTS vorhandene Technik und die an der HSZG entwickelte MHL-BGA-Technologie wird in eine Gesamtanlage mit 4 Containern zusammengesellt. Durch den vorgeschalteten Aufbereitungscontainer (1) mit u.a. einem Extruder kann eine deutliche Erweiterung des Substrateinsatzspektrums dieser modularen Bioenergieanlage erreicht werden. Bewusst wird im Projekt ModBioEn auf das Ziel 'Erweiterung des Substrateinsatzspektrums für Bioenergieanlagen' des Förderprogrammes 'Energetische Biomassenutzung' eingegangen. Dafür wurden drei regionale Partner gewonnen: A) die Kommune Reichenbach, B) die Brauerei Eibau und C) die Safterei Linke. Zunächst erfolgt der Einsatz am Standort 'Real-Technikum Reichenbach' (A) als Beispiel für einen kommunalen Anwender. Zweiter Standort ist die Brauerei Eibau. Bisher leitet die Brauerei die Reststoffe (Heißtrub, Hefewasser und Biervorlauf), die durch den Brauprozess in größeren Mengen entstehen, energetisch völlig ungenutzt und kostenpflichtig in das Abwasser ein. Es handelt sich so-mit um wirkliche Rest- und Abfallstoffe im Sinne des Förderprogramms. Dritter Standort ist die Safterei mit Trester als Reststoff. Es erfolgt eine wissenschaftliche Begleitung beim Betrieb der Anlage sowie die Auswertung der Versuchsdaten hinsichtlich Gasquantität und Gasqualität und eine Prozessoptimierung speziell für die einzelnen Reststoffe.
Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.
Hauptproblematik bei der Umsetzung von Vergasungsverfahren für Biomassen stellen nach wie vor die im Produktgas enthaltenen höheren Kohlenwasserstoffe dar. Ziel der Entwicklung des IPV-Verfahrens ist es, ein preisgünstiges Verfahren zur energetischen und rohstofflichen Nutzung von Biomassen und biogenen Reststoffen zu entwickeln, das die Vorbehandlung auf ein Minimum reduziert, ein hochwertiges, nicht mit Inertgasen verdünntes Produktgas erzeugt, dabei mit möglichst einfacher Anlagentechnik robust ist und eine hohe Verfügbarkeit aufweist. Das Verfahren beinhaltet die Kopplung eines Pyrolyse- und eines Verbrennungsprozesses. Das entstehende weitgehend teerfreie Synthesegas kann rohstofflich oder energetisch verwendet werden.
Die Optimierung der verbrennungstechnischen Eigenschaften von Biobrennstoffgemischen, die sich aus unterschiedlichsten biogenen Rest- und Abfallstoffen zusammensetzen, ist das Hauptziel des Projektes. Auf Basis der technischen Anwendung eines von den Antragstellern entwickelten Biobrennstoffkataloges werden optimierte Biorennstoffgemische durch Labor- und Technikumsversuche vor deren großtechnischem Einsatz in Biomassekraftwerken definiert. Die Wirkung und Effizienz der Optimierungsmaßnahmen wird im Hinblick auf eine Reduktion der Bildung von Anbackungen im Verbrennungsraum und der Bildung von Belägen im konvektiven Kesselbereich bewertet. Hierzu werden großtechnische Versuche im Regelbetrieb in vier BMKW durchgeführt, die unterschiedliche Biobrennstoffgemische thermisch behandeln. Durch erfolgreiche Optimierungsmaßnahmen soll eine erweiterte Ressourcennutzung technisch schwieriger biogener Rest- und Abfallstoffe erreicht und gleichzeitig die Energieeffizienz von BMKW durch eine Erhöhung der Strom- und Wärmeproduktion gesteigert werden. Dies wird durch eine Verlängerung der Laufzeiten aufgrund minimierter Stillstandszeiten für Reinigungsmaßnahmen und einer Ausweitung der geplanten Revisionsintervalle erreicht. Eine optimierte Ressourcennutzung wird durch die Verknüpfung der unterschiedlichen thermischen Eigenschaften verschiedener Bioenergieträger erreicht, wobei optimierte Brennstoffgemische aus definierten Anteilen von biogenen Rest- und Abfallstoffen hergestellt werden, die spezifische brennstofftechnische Eigenschaften aufweisen. Die Steigerung der Energieeffizienz soll durch den Einsatz anlagenspezifisch optimierter Brennstoffgemische mit einem reduzierten Foulingpotential erreicht werden. Dies führt zu einer deutlichen Reduzierung der Bildung von Anbackungen und Belägen. Die Steigerung der Energieeffizienz von BMKW führt zusätzlich zu einer Verminderung von CO2-Emissionen durch eine Reduktion des Einsatzes von fossilen Brennstoffen.
Die Optimierung der verbrennungstechnischen Eigenschaften von Biobrennstoffgemischen, die sich aus unterschiedlichsten biogenen Rest- und Abfallstoffen zusammensetzen, ist das Hauptziel des Projektes. Auf Basis der technischen Anwendung eines von den Antragstellern entwickelten Biobrennstoffkataloges werden optimierte Biorennstoffgemische durch Labor- und Technikumsversuche vor deren großtechnischem Einsatz in Biomassekraftwerken definiert. Die Wirkung und Effizienz der Optimierungsmaßnahmen wird im Hinblick auf eine Reduktion der Bildung von Anbackungen im Verbrennungsraum und der Bildung von Belägen im konvektiven Kesselbereich bewertet. Hierzu werden großtechnische Versuche im Regelbetrieb in vier BMKW durchgeführt, die unterschiedliche Biobrennstoffgemische thermisch behandeln. Durch erfolgreiche Optimierungsmaßnahmen soll eine erweiterte Ressourcennutzung technisch schwieriger biogener Rest- und Abfallstoffe erreicht und gleichzeitig die Energieeffizienz von BMKW durch eine Erhöhung der Strom- und Wärmeproduktion gesteigert werden. Dies wird durch eine Verlängerung der Laufzeiten aufgrund minimierter Stillstandszeiten für Reinigungsmaßnahmen und einer Ausweitung der geplanten Revisionsintervalle erreicht. Eine optimierte Ressourcennutzung wird durch die Verknüpfung der unterschiedlichen thermischen Eigenschaften verschiedener Bioenergieträger erreicht, wobei optimierte Brennstoffgemische aus definierten Anteilen von biogenen Rest- und Abfallstoffen hergestellt werden, die spezifische brennstofftechnische Eigenschaften aufweisen. Die Steigerung der Energieeffizienz soll durch den Einsatz anlagenspezifisch optimierter Brennstoffgemische mit einem reduzierten Foulingpotential erreicht werden. Dies führt zu einer deutlichen Reduzierung der Bildung von Anbackungen und Belägen. Die Steigerung der Energieeffizienz von BMKW führt zusätzlich zu einer Verminderung von CO2-Emissionen durch eine Reduktion des Einsatzes von fossilen Brennstoffen.
Origin | Count |
---|---|
Bund | 1039 |
Land | 18 |
Wissenschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Ereignis | 3 |
Förderprogramm | 970 |
Text | 72 |
unbekannt | 12 |
License | Count |
---|---|
geschlossen | 48 |
offen | 968 |
unbekannt | 42 |
Language | Count |
---|---|
Deutsch | 1040 |
Englisch | 202 |
Resource type | Count |
---|---|
Archiv | 41 |
Bild | 4 |
Datei | 42 |
Dokument | 56 |
Keine | 625 |
Webseite | 377 |
Topic | Count |
---|---|
Boden | 827 |
Lebewesen und Lebensräume | 1058 |
Luft | 466 |
Mensch und Umwelt | 1058 |
Wasser | 443 |
Weitere | 991 |