Ziel des Projektantrages im Rahmen der DFG Forschergruppe ist die prozessbasierte Klassifizierung von Hochwasserereignissen in 1010 deutschen und österreichischen Einzugsgebieten im Zeitraum 1978-2013. Beispiel von Hochwassertypen sind z.B. Hochwasserereignisse aufgrund langanhaltender Niederschläge und hoher Vorbefeuchtung, Hochwasserereignisse aufgrund kurzer Starkniederschläge mit Oberflächenabfluss oder Schneeschmelzereignisse. Die Hochwasserereignisse werden anhand verschiedener Prozessindikatoren, wie z.B. Dauer, räumliche Überdeckung, Form der Abflussganglinie, Gebietszustand vor und während des Ereignisses (abgeleitet aus hydrologischer Modellierung) klassifiziert. Die Klassifikation erfolgt hierarchisch, d.h. für einzelne Ereignisse werden nacheinander die meteorologischen Ursachen, die Abflussbildungsprozesse und Routingprozesse, wie z.B. der Überlagerung von Abflusswellen aus Teileinzugsgebieten untersucht und in Klassen eingeteilt. Die Hochwassertypen ergeben sich dann aus Kombination der einzelnen Klassifikationen von Meteorologie, Abflussprozess und Abflussrouting. Um möglichst viele Ereignisse untersuchen zu können erfolgt eine automatische Klassifikation mittels der Abfrage verschiedener Indikatoren und einer Cluster Analyse. Der Klassifikationsalgorithmus wird anhand ausgewählter Ereignisse validiert und die Sensitivitätsanalyse durchgeführt. Für jedes Gebiet wird die Auftretenshäufigkeit der einzelnen Hochwassertypen berechnet und deren raum-zeitliche Veränderungen analysiert. Mit Hilfe von Regressionsbäumen und Self-organising maps (SOM) wird der Zusammenhang der räumlichen Veränderungen der Auftrittswahrscheinlichkeiten einzelner Hochwassertypen und Gebietseigenschaften untersucht. Die Analyse der zeitlichen Veränderung der Hochwassertypen zielt auf die Frage, ob bestimmte Hochwassertypen wie z.B. Hochwasser aufgrund lokaler Starkregen in den letzten Jahren vermehrt auftreten. Die Ergebnisse des Projektes helfen die Hochwasserbemessung und das Hochwassermanagement zu verbessern, zeigen sie doch mit welche Arten von Hochwasserereignissen (inkl. Dauer, räumliche Überdeckung, Dynamik der Abflussganglinie, etc. ) in Gebieten zu rechnen ist. Anderseits hilft die Einteilung in Prozessklassen Klarheit in die Variabilität, Ähnlichkeit und Veränderungen von Hochwasserprozessen zu bringen. Eine Klassifikation erlaubt nur solche Ereignisse zu vergleichen, die ähnliche Prozessursachen haben. Die Analyse der raum-zeitlichen Variabilität der Eintrittshäufigkeit von Hochwassertypen erlaubt somit Änderungen in Prozessen besser zu erkennen und zu verstehen, selbst wenn kein klarer Trend in der Größe der Hochwasserabflüsse zu erkennen ist.
Nutzung der Kuestenressourcen in Ecuador: Die Mongrovenwaelder und ihre Beeintraechtigung durch die Garnelenzucht.' 'Arten- und Biotopschutzfunktion linienfoermiger Biotope in den Agrarlandschaft.' 'Graphische Ueberflutungssimulationen unter Einsatz eines digitalen Hoehenmodells.
Wo und wie werden Hochwässer verursacht? Welche Faktoren kontrollieren die Wasserqualität des Baches bei Ereignissen? Diese Fragen sind für viele Bereiche von Bedeutung, die Ingenieurwissenschaften, den Hochwasserschutz, das Wasser- und Ökosystemmanagement bis hin zur Vorhersage der Auswirkungen des globalen Wandels. In dem gesamten hydrologischen Abflussprozessgefüge, das bei diesen Fragen zugrunde liegt, ist der Zwischenabfluss (SSF), also die schnelle Ereignisreaktion, die durch den lateralen unterirdischen Abfluss ausgelöst wird, der am schwersten erfassbare. Dieser ist ein bedeutsamerer Prozess als allgemein bekannt, da ein grundlegendes Verständnis, das auf systematischen Studien über Skalen und Standorte hinweg basiert, noch fehlt. Nur mit systematischen Untersuchungen, die Funktionsprinzipien aufdecken, wird es möglich sein, unser Prozessverständnis wirklich zu verbessern und methodische Verfahren für seine Bewertung sowohl experimentell als auch modelltechnisch bereitzustellen. In vielen Naturlandschaften spielt SSF eine große Rolle bei der Abflussbildung. Entweder durch direkten Beitrag zum Abfluss im Vorfluter oder durch die Erzeugung von gesättigten Bereichen oder Flächen mit return flow, die über Sättigungsoberflächenabfluss zum Gerinneabfluss beitragen. Daher könnte ein Großteil dessen, was wir als Ereignisreaktion in der Ganglinie sehen, das direkte oder indirekte Ergebnis von SSF sein. Es ist wahrscheinlich, dass der Beitrag von SSF größer ist, als wir allgemein annehmen. Trotzdem, SSF ist schwer fassbar und bisher unzureichend berücksichtigt, da dessen Messung aus verschiedensten Gründen sehr schwierig ist: die Unzugänglichkeit des Untergrundes, die große räumliche Variabilität und Heterogenität, die variablen Quellen und die Tatsache, dass es sich um einen schwellengesteuerten Prozess handelt, der nur bei bestimmten Ereignissen stattfindet. Es ist daher eine systematische Untersuchung des SSF in verschiedenen Landschaften, in denen SSF den dominanten Abflussprozess darstellt, notwendig, über Skalen hinweg und unter Verwendung einer replizierten Auswahl von Ansätzen, einschließlich neuartiger Ansätze. Es folgt eine systematische Bewertung von Methoden und möglichen Proxies sowie ein Modellvergleich, eine Bewertung und Verbesserung. Wir werden uns auf 4 wesentliche Herausforderungen konzentrieren: 1) Entwicklung neuer experimenteller Methoden, 2) Räumliche Muster des SSF, 3) Schwellenwerte und kaskadierende Effekte des SSF, sowie 4) Auswirkungen des SSF.Während Einzelforschungsprojekte einen Teil dieses Puzzles an einem bestimmten Ort untersuchen, bietet diese Forschungseinheit die einzigartige Möglichkeit, diese vielen Puzzleteilen zusammenzufügen. Diese Forschungseinheit wird sich stark auf experimentelle Arbeiten in vier verschiedenen Test-Einzugsgebieten konzentrieren, die dann direkt in eine gemeinsame Modellierungsarbeit einfließen, die wiederum das experimentelle Design in einem iterativen Prozess beeinflusst.
Mit Hilfe der Satelliten-Fernerkundung soll ein kontinuierliches Ueberwachungsprogramm zur Erfassung wichtiger glaziologischer Parameter aufgebaut werden, insbesondere von ELA (Equilibrium-Line-Altitude) und AAR (Accumulation Area Ratio). Daraus lassen sich wiederum Gletscher-Massenbilanz-Klimabeziehungen ableiten. Durch laengerfristige Beobachtung des Verhaltens eines Gletschers und durch regionale Vergleiche sollen sowohl Hinweise auf Klimaschwankungen und -veraenderungen abgeleitet, als auch Rueckschluesse auf Massenbilanz der Gletscher und damit auf das Abflussregime gewonnen werden.
Der Kartendienst (WMS-Gruppe) stellt die Daten der Hochwassergefahrenkarte und der Hochwasserrisikokarte der saarländischen Gewässer dar.:Messstelle Oberflächenwasser Pegel; Betrachtungsobjekt im GDZ, punkthafte Featureklasse (GDZ2010.wlowpgl);exportiert in Filegeodatabase Außer zahlreichen Datenbankinterenen Attributen sind folgende anwenderrelevante Attribute vorhanden: PGLG1 = Pegel Lage (Entfernung von der Mündung) PGLG2 = Pegel Lage (Entfernung und Seite oberhalb der Mündung) PGNP = Pegelnullpunkt MSTNR = Messstellennummer MSTBEM = Messstelle Bemerkung; Maßstabsbeschränkung: Min 1:50.000, Max 1:3000.
Der Kartendienst (WMS Gruppe) stellt ausgewählte Wasserdaten des Saarlandes dar.:Messstelle Oberflächenwasser Pegel; Betrachtungsobjekt im GDZ, punkthafte Featureklasse (GDZ2010.wlowpgl);exportiert in Filegeodatabase Außer zahlreichen Datenbankinterenen Attributen sind folgende anwenderrelevante Attribute vorhanden: PGLG1 = Pegel Lage (Entfernung von der Mündung) PGLG2 = Pegel Lage (Entfernung und Seite oberhalb der Mündung) PGNP = Pegelnullpunkt MSTNR = Messstellennummer MSTBEM = Messstelle Bemerkung
Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Wasser dar.:Messstelle Oberflächenwasser Pegel
Raugerinne mit Beckenstruktur stellen für die WSV eine Regelbauweise für die Wiederherstellung der ökologischen Durchgängigkeit dar. Derzeit ist unklar, welche Auswirkung Raugerinne auf die Stauhaltung im Oberwasser haben. Im Rahmen des Forschungsprojektes sollen Methoden für die Vorhersage der Stauwirkung von Raugerinnen mit Beckenstruktur entwickelt werden. 1 Aufgabenstellung und Ziel Gewässerbreite Raugerinne mit Beckenstruktur (Titelbild) gehören bei der Herstellung der ökologischen Durchgängigkeit an Bundeswasserstraßen zu den Regelbauweisen der WSV. Für die Genehmigung dieser Bauwerke ist der Nachweis der Auswirkungen auf die Wasserspiegellagen im Oberwasser zu erbringen. Die Hydraulik von Raugerinnen mit Beckenstruktur ist komplex, da in Abhängigkeit der Parameter Abfluss, Gefälle und Geometrie verschiedene charakteristische Fließzustände auftreten, die sich auf die Oberwasserspiegel auswirken. Bei geringen Abflüssen wird das Bauwerk im Wesentlichen durch die Durchgangsöffnungen der Riegel durchströmt, die aus Gründen der ökologischen Durchgängigkeit angeordnet werden. Bei steigendem Abfluss findet ein Übergang in ein gewelltes Abflussregime mit stehenden Wellen an den Riegeln und Froude-Zahlen um 1 statt. Bei großen Abflussereignissen wird das Bauwerk komplett überströmt und die Riegel wirken als Sohlrauheit. In der Praxis werden für die Berechnung der Wasserspiegellagen häufig 1D- oder 2D-Modelle verwendet, welche die vorherrschenden hydraulischen Verhältnisse nur vereinfacht wiedergeben. Hingegen werden von der Genehmigungsseite hohe Genauigkeiten erwartet. Die BAW sieht sich dabei häufig in der Rolle, die Güte der Modelle Dritter beurteilen zu müssen. Aus diesem Grund ist es das Ziel des Forschungsprojektes, geeignete Berechnungsmethoden für die Vorhersage des Oberwasserstandes zu entwickeln. 2 Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Der Nutzen für die WSV liegt in einer verbesserten Aussagequalität für einen wichtigen genehmigungsrelevanten Teilaspekt bei der Planung von Fischaufstiegsanlagen. Mithilfe einer prognosefähigen Berechnungsmethode werden Planungsprozesse vereinfacht und Risiken hinsichtlich einer Oberwasserspiegellagenveränderung verringert. Zudem können aufwendige Vergaben von Modellrechnungen unterbleiben oder diese anhand der Projektergebnisse für eine belastbare Anwendung kalibriert werden. Untersuchungsmethoden Die Entwicklung der Berechnungsmethoden wird in drei Phasen durchgeführt. In der ersten Phase wurden grundsätzliche hydraulische Zusammenhänge zwischen der Strömung im Oberwasser und der Strömung auf einem Raugerinne mit Beckenstruktur analysiert. Hierfür wurden zunächst vereinfachte Raugerinnegeometrien (ohne Böschung, Durchgangsöffnungen etc.) betrachtet. Um in der Literatur beschriebene Ansätze (z. B. Dust und Wohl 2012, Baki et al. 2017) zu testen und weiterzuentwickeln, wurden an der BAW verfügbare Messdaten und Daten aus einer Kooperation mit dem Bundesamt für Wasserwirtschaft in Wien (Österreich, Hengl 2023) ausgewertet. In der zweiten Projektphase werden vorhandene Berechnungsansätze um weitere Parameter (Böschung und Durchgangsöffnungen etc.) ergänzt, um naturgetreue Raugerinnegeometrien abzubilden. Die Untersuchungen in dieser Projektphase werden mit 3D-HN-Modellen durchgeführt, die mit den Datensätzen aus der ersten Projektphase kalibriert werden. In der dritten Projektphase werden die gewonnenen Erkenntnisse für Raugerinne unter realen Bedingungen getestet. Hierfür werden Messungen an bestehenden Raugerinnen durchgeführt (Bild 1) und deren Ergebnisse mit denen der neu entwickelten Berechnungsmethoden verglichen. Begleitend wird mittels der HN-Modelle eine Empfehlung zum methodischen Vorgehen bei Modellierungen entwickelt werden. Diese soll bei Standorten mit Sonderanordnungen, wie z. B. teilbreite Raugerinne, oder im Falle von gekrümmten Raugerinnen als Modellierungsgrundlage dienen.
| Origin | Count |
|---|---|
| Bund | 238 |
| Europa | 4 |
| Land | 30 |
| Wissenschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Förderprogramm | 226 |
| Taxon | 1 |
| Text | 10 |
| Umweltprüfung | 1 |
| unbekannt | 23 |
| License | Count |
|---|---|
| geschlossen | 23 |
| offen | 232 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 234 |
| Englisch | 63 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 1 |
| Dokument | 24 |
| Keine | 159 |
| Unbekannt | 1 |
| Webdienst | 3 |
| Webseite | 82 |
| Topic | Count |
|---|---|
| Boden | 221 |
| Lebewesen und Lebensräume | 224 |
| Luft | 200 |
| Mensch und Umwelt | 260 |
| Wasser | 241 |
| Weitere | 262 |