API src

Found 262 results.

Similar terms

s/abflusssregime/Abflussregime/gi

Auswirkung von gewässerbreiten Raugerinnen mit Beckenstruktur auf den Oberwasserstand

Raugerinne mit Beckenstruktur stellen für die WSV eine Regelbauweise für die Wiederherstellung der ökologischen Durchgängigkeit dar. Derzeit ist unklar, welche Auswirkung Raugerinne auf die Stauhaltung im Oberwasser haben. Im Rahmen des Forschungsprojektes sollen Methoden für die Vorhersage der Stauwirkung von Raugerinnen mit Beckenstruktur entwickelt werden. 1 Aufgabenstellung und Ziel Gewässerbreite Raugerinne mit Beckenstruktur (Titelbild) gehören bei der Herstellung der ökologischen Durchgängigkeit an Bundeswasserstraßen zu den Regelbauweisen der WSV. Für die Genehmigung dieser Bauwerke ist der Nachweis der Auswirkungen auf die Wasserspiegellagen im Oberwasser zu erbringen. Die Hydraulik von Raugerinnen mit Beckenstruktur ist komplex, da in Abhängigkeit der Parameter Abfluss, Gefälle und Geometrie verschiedene charakteristische Fließzustände auftreten, die sich auf die Oberwasserspiegel auswirken. Bei geringen Abflüssen wird das Bauwerk im Wesentlichen durch die Durchgangsöffnungen der Riegel durchströmt, die aus Gründen der ökologischen Durchgängigkeit angeordnet werden. Bei steigendem Abfluss findet ein Übergang in ein gewelltes Abflussregime mit stehenden Wellen an den Riegeln und Froude-Zahlen um 1 statt. Bei großen Abflussereignissen wird das Bauwerk komplett überströmt und die Riegel wirken als Sohlrauheit. In der Praxis werden für die Berechnung der Wasserspiegellagen häufig 1D- oder 2D-Modelle verwendet, welche die vorherrschenden hydraulischen Verhältnisse nur vereinfacht wiedergeben. Hingegen werden von der Genehmigungsseite hohe Genauigkeiten erwartet. Die BAW sieht sich dabei häufig in der Rolle, die Güte der Modelle Dritter beurteilen zu müssen. Aus diesem Grund ist es das Ziel des Forschungsprojektes, geeignete Berechnungsmethoden für die Vorhersage des Oberwasserstandes zu entwickeln. 2 Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Der Nutzen für die WSV liegt in einer verbesserten Aussagequalität für einen wichtigen genehmigungsrelevanten Teilaspekt bei der Planung von Fischaufstiegsanlagen. Mithilfe einer prognosefähigen Berechnungsmethode werden Planungsprozesse vereinfacht und Risiken hinsichtlich einer Oberwasserspiegellagenveränderung verringert. Zudem können aufwendige Vergaben von Modellrechnungen unterbleiben oder diese anhand der Projektergebnisse für eine belastbare Anwendung kalibriert werden. Untersuchungsmethoden Die Entwicklung der Berechnungsmethoden wird in drei Phasen durchgeführt. In der ersten Phase wurden grundsätzliche hydraulische Zusammenhänge zwischen der Strömung im Oberwasser und der Strömung auf einem Raugerinne mit Beckenstruktur analysiert. Hierfür wurden zunächst vereinfachte Raugerinnegeometrien (ohne Böschung, Durchgangsöffnungen etc.) betrachtet. Um in der Literatur beschriebene Ansätze (z. B. Dust und Wohl 2012, Baki et al. 2017) zu testen und weiterzuentwickeln, wurden an der BAW verfügbare Messdaten und Daten aus einer Kooperation mit dem Bundesamt für Wasserwirtschaft in Wien (Österreich, Hengl 2023) ausgewertet. In der zweiten Projektphase werden vorhandene Berechnungsansätze um weitere Parameter (Böschung und Durchgangsöffnungen etc.) ergänzt, um naturgetreue Raugerinnegeometrien abzubilden. Die Untersuchungen in dieser Projektphase werden mit 3D-HN-Modellen durchgeführt, die mit den Datensätzen aus der ersten Projektphase kalibriert werden. In der dritten Projektphase werden die gewonnenen Erkenntnisse für Raugerinne unter realen Bedingungen getestet. Hierfür werden Messungen an bestehenden Raugerinnen durchgeführt (Bild 1) und deren Ergebnisse mit denen der neu entwickelten Berechnungsmethoden verglichen. Begleitend wird mittels der HN-Modelle eine Empfehlung zum methodischen Vorgehen bei Modellierungen entwickelt werden. Diese soll bei Standorten mit Sonderanordnungen, wie z. B. teilbreite Raugerinne, oder im Falle von gekrümmten Raugerinnen als Modellierungsgrundlage dienen.

Klimawandel-bedingte Veränderungen der Morphodynamik der Binnenschifffahrtsstraßen

Erarbeitung einer Methodik zur Untersuchung der langfristigen Auswirkungen des Klimawandels auf Morphodynamik, Unterhaltung und Sedimentmanagement der freifließenden Wasserstraßen unter Erhöhung von Belastbarkeit und Nutzwert bisheriger (hydrodynamischer) und zukünftiger (morphodynamischer) Beiträge zum Climate Proofing. Aufgabenstellung und Ziel Der Klimawandel wirkt sich auf alle Bereiche unserer Umwelt aus. So sind auch Flüsse, die als Wasserstraßen einen energieeffizienten Transport durch Binnengüterschiffe ermöglichen und darüber hinaus weitere wichtige Funktionen erfüllen, auf verschiedenste Weise durch den Klimawandel betroffen (Scharf et al. 2022). Die im Zuge des Klimawandels erwarteten Veränderungen im Abflussgeschehen führen dazu, dass die Planung wasserbaulicher Projekte auf Grundlage retrospektiv begründeter Herstellparameter mit zusätzlichen Unsicherheiten verbunden ist. Aufbauend auf BAW (2020) wird im Projekt KliMoBin eine bewertende Methodik bezüglich der Auswirkungen des Klimawandels auf die Morphodynamik der Wasserstraßen untersucht. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Mit der Deutschen Anpassungsstrategie an den Klimawandel (DAS) geht für die WSV der Auftrag zur Berücksichtigung der Auswirkungen des Klimawandels bei der Maßnahmenplanung einher (WSV-Klimaanpassung). Die Aufgabe der BAW ist es, die WSV in diesem Planungsprozess wissenschaftlich fundiert zu unterstützen. Um in diesem Rahmen die Auswirkungen des Klimawandels auf die Hydro- und Morphodynamik der freifließenden Binnenschifffahrtsstraßen in die Untersuchungen einbeziehen zu können, ist es notwendig, verlässliche und abgestimmte Untersuchungsstrategien zur Verfügung zu haben. Die Erkenntnisse des Projekts KliMoBin und die davon abgeleitete Untersuchungssystematik leisten somit einen Beitrag zum Auftrag der WSV - dem Erhalt einer Klimawandel-robusten Bundeswasserstraße im Sinne der DAS. Untersuchungsmethoden Für die Untersuchungen wurde ein stark abstrahiertes eindimensionales Feststofftransportmodell (1D-FTM) aufgebaut. Es zeichnet sich durch ein einheitliches Sohlgefälle, eine an allen Profilen gleiche Geometrie und eine über die Strecke einheitliche initiale Sohlkornzusammensetzung aus. Diese Reduzierung erleichtert die Bewertung der Untersuchungsergebnisse in Bezug auf eine zu variierende oberstromige Abflussrandbedingung. Das Modell orientiert sich in seinen Kennzahlen am Niederrhein. Es weist ein Sohlgefälle von 0,18 ‰ auf. Die Geometrie der Profile besteht aus einem Doppeltrapezprofil mit einer Streichlinienbreite von 330 m und einer beweglichen Sohle mit einer Breite von 300 m. Der Geschiebetransport wird mit zwei unterschiedlichen Formeln (Transport der Geschiebefraktion < 64 mm nach Toffaleti, > 64 mm nach Meyer-Peter Müller) berechnet. Die initiale Sohlkornzusammensetzung basiert auf einer Schürfprobenkampagne der BAW aus dem Jahr 2020. Der oberstromige Geschiebeeintrag wird abflussabhängig über das komplette Abflussspektrum mittels einer Transport-Abfluss-Beziehung (Referenz: Geschiebemessstelle Königswinter) hinweg gesteuert. Hydraulisch kalibriert wurde über das gesamte Abflussspektrum. Morphologisch kalibriert wurde auf Basis dokumentierter Geschiebetransportraten und beobachteter Flächenerosion vor Beginn der Stabilisierung durch Geschiebezugaben am Niederrhein in Höhe von 1- 1,5 cm/a (Quick et al. 2020). Die oberstromige Randbedingung erfährt durch den Klimawandel eine Veränderung der Abflussmenge und -dynamik. Um die morphodynamische Wirkung dieser veränderten Abflussverhältnisse zu bewerten, sind zunächst Abflussprojektionen (Quelle: DAS Basisdienst) auf Grundlage der kumulierten Wahrscheinlichkeitsverteilung in „nasse“ und „trockene“ Ganglinien unterteilt worden. Verglichen wurden die 16 Abflussganglinien des Antriebsszenarios RCP8.5 („Hochemissionsszenario“) für die ferne Zukunft (2070-2099). (Text gekürzt)

Binnenwasserstraßen: Abflüsse steuern und Wasserstände regeln

An den staugeregelten Bundeswasserstraßen ist eine genaue Einhaltung der vertraglich festgelegten Wasserstände erforderlich. Die Automatisierung hilft hier mit einer standardisierten Vorgehensweise und sorgt für einen reibungsfreien Betrieb. Effizient und erneuerbar: Wasser bewegt! Deutschland verfügt über ein wirtschaftlich leistungsfähiges Wasserstraßennetz, das die Seehäfen an Nord- und Ostsee mit den Binnenhäfen verbindet. Die 7.350 km Binnenwasserstraßen bestehen zu 25 Prozent aus Kanalstrecken, zu 35 Prozent aus frei fließenden und zu 40 Prozent aus staugeregelten Flussabschnitten. Im Zusammenhang mit dem Staustufenbau wurden an den größeren Flüssen vielfach Laufwasserkraftwerke errichtet, die mit der erneuerbaren Ressource Wasser Strom erzeugen. Zu den staugeregelten Bundeswasserstraßen mit Wasserkraftnutzung zählen Weser, Oberrhein, Neckar, Main, Mosel, Saar und Donau mit einer installierten Leistung von derzeit ca. 750 Megawatt. Damit wird mit den Laufwasserkraftwerken etwa so viel Energie erzeugt, wie alle Schiffstransporte auf dem Wasser verbrauchen (vgl. Verkehrsinvestitionsbericht 2008).

Vorhersage von Schüttungen alpiner Karstquellen im Hinblick auf den Klimawandel unter Verwendung neuer Deep Learning-Methoden

Karstgrundwasserleiter spielen im Alpenraum eine wichtige Rolle. Sie bedecken etwa 56% der Fläche, und ein erheblicher Teil der Bevölkerung ist ganz oder teilweise von Trinkwasser aus Karstquellen abhängig, die oft mit wertvollen Ökosystemen verbunden sind und zur Wasserkrafterzeugung beitragen. Die Alpen zählen nach Studien zu den am stärksten vom Klimawandel betroffenen Gebieten in Europa. Als Folge der steigenden Temperaturen werden sich die gespeicherten Mengen an Schnee und Eis stark verringern, was zu einer Verschiebung zwischen Wasserhaushaltskomponenten in Verbindung mit einer saisonalen Umverteilung der Niederschläge führt. Außerdem wird erwartet, dass Hoch- und Niedrigwasserereignisse häufiger auftreten werden. Der Stand der Technik bei der Modellierung der Schüttung von Karstquellen, meist mittels konventioneller numerischer Modelle, ist auf standortspezifische, oft aufwändige und nicht übertragbare wissenschaftliche Studien beschränkt, die manuelle Modellabstimmung und Kalibrierung erfordern. Bis heute gibt es keinen leicht übertragbaren Ansatz, der gleichzeitig auf viele Karstquelleinzugsgebiete anwendbar ist. In diesem Projekt werden wir einen modernen, Deep-Learning basierten Ansatz zur Modellierung der Schüttung von Karstquellen entwickeln, der sich besonders gut eignet, übertragbare Modelle, die Informationen von verschiedenen Standorten nutzen können, aufzubauen. Deep Learning ist ein Teilgebiet des maschinellen Lernens, basierend auf künstlichen neuronalen Netzen, das sich sowohl bei akademischen als auch bei industriellen Anwendungen als sehr erfolgreich erwiesen hat. Die vorgeschlagene Studienregion sind die Alpen, mit Karstgebieten in Österreich, der Schweiz, Deutschland, Frankreich, Italien und Slowenien, mit einem Schwerpunkt auf dem besonders vom Klimawandel betroffenen von der Alpenkonvention abgegrenzten Gebirgsgebiet. Als Grundlage der Studie dient das World Karst Spring Database (WoKaS). Es wird im Laufe des Projekts mit zusätzlichen Daten von Behörden und Wasserversorgern ergänzt, insbesondere in Regionen mit bislang schlechter Abdeckung. Die Arbeiten beinhalten die Erstellung eines umfassenden Datensatzes mit Einzugsgebietsattributen und meteorologischen Einflussgrößen für etwa 150 Quellen. Klassische Lumped-Parameter-Modelle werden als Benchmarks aufgesetzt und mit den neu entwickelten Deep-Learning basierten Modellergebnissen verglichen. Ziel ist es, die Eignung neuartiger Deep-Learning Modellansätze für die Abschätzung der Auswirkungen des Klimawandels für eine Vielzahl von kurz- und langfristigen Vorhersagen zu untersuchen. Eine vertiefende Fallstudie des Dachsteingebietes, dessen große Karstregion wesentlich zur Wasserversorgung und Wasserkrafterzeugung beiträgt, wird die vergleichende Untersuchung mit einem numerischen 3D-Modell erweitern. Schließlich werden die entwickelten Modelle dazu verwendet, um Auswirkungen des Klimawandels auf die alpinen Karstgrundwasserressourcen vorherzusagen.

Umgestaltung eines Wassereinzugsgebietes im Nationalpark Eifel von einem Fichtenwaldreinbestand zu einem standortgerechten Laubmischwald: Dynamik des Kohlenstoff- und Wasserhaushaltes; Heterogenität relevanter Standortfaktoren für die Waldentwicklung - Untersuchungen zum Wasser- und Stoffhaushalt kleiner bewaldeter Einzugsgebiete unter besonderer Berücksichtigung periglazialer Deckschichten (Natio

Hintergrund: Dieses Projekt begleitet die Umgestaltung eines Fichtenwald-Reinbestandes im Nationalpark Eifel vom derzeitigen Ist-Zustand über eine Baumentnahme hin zu einem standortgerechten Laubmischwald. Der Stoffhaushalt (Kohlenstoff, Lösungsfracht, Schwebfracht, Bachgeschiebe und Wasser) sowie die ihn beeinflussenden Faktoren (Klima, Boden, Vegetation, Landnutzung) werden genauer untersucht. Erstmalig werden für dieses Gebiet im Rahmen dieses Projektes CO2-Kreisläufe quantifiziert und Maßnahmen zur Kohlenstoffreduktion beschrieben (durch das Institut für Chemie und Dynamik der Geosphäre - Institut 4: Agrosphäre (ICG-4)). Zudem sollen zu erwartende Veränderungen auf Stoff- und Wasserkreisläufe erfasst werden. Bestehende Datenlücken für die Mittelgebirge werden damit geschlossen (durch den Lehrstuhl für Physische Geographie und Geoökologie (PGG)). Fragestellungen: Aufgabe des Projektes wird sein, präzise Informationen zum Stoff- (u.a. Kohlendioxid, Nitrat, Phosphat, Ammonium) und Wasserkreislauf zu erhalten sowie die Bedeutung standortrelevanter Parameter (Klima, Boden, Vegetation, Landnutzung) bei der Entstehung eines standorttypischen Laubmischwaldes zu erfassen. Während der Umwandlung eines Fichtenreinbestandes zu einem Laubwald - mit Vergleichsuntersuchungen im Freiland (Wiese) - sollen verschiedene Stadien der Umwandlung untersucht werden. Die Ergebnisse werden neue und vor allem quantifizierbare Erkenntnisse zum CO2-Haushalt sowie zum Wasser- und Stoffkreislauf im Ökosystem Wald liefern; Grundbausteine für eine nachhaltige Landnutzung und der Reduzierung atmosphärischen CO2. Von der Arbeitsgruppe PGG und dem ICG-4 bearbeitete Fragestellungen: - Wie wirken sich Landnutzungsänderungen auf Stoff- und Wasserhaushalt aus? - Welche Auswirkungen hat der Klimawandel auf Wasser, Boden und Vegetation? - Wie wirken sich Rückkopplungsprozesse auf terrestrische Systeme aus? - Wie wirken sich großräumige Eingriffe aus? Ziele: Ziele des Lehrstuhls für Physische Geographie und Geoökologie sind insbesondere, in Kooperation mit dem ICG-4 Veränderungen des Kohlenstoff- und Wasserhaushaltes sowie der Nährstoffkreisläufe in Erwartung des absehbaren Klimawandels und der Maßnahmen zur CO2-Reduktion zu erfassen. Gesicherte Erkenntnisse in Bezug auf den Wasserhaushalt und die ihn beeinflussenden Größen in Mittelgebirgsräumen liegen bisher kaum vor. Hier schließt das Projekt eine Datenlücke. Die Rolle der Vegetation sowie der Böden (insbesondere die bodenbildenden periglazialen Deckschichten) sind hier von Bedeutung, da Prozesse der Stoffakkumulation, -umwandlung und -transport von diesen Parametern stark abhängig sind. Deckschichten haben mit ihren Mächtigkeiten und Ausprägungen einen starken Einfluss auf Sickerwasser, Grundwasserneubildung, Retention und Oberflächenabfluss. Zudem ist für die Kooperation mit dem ICG-4 die Betrachtung des Bodenwasserhaushaltes unerlässlich, um den CO2-Vorrat im Boden zu analysieren. Die Retentionskapazitäten der Böden werden präzi

Hochwasser - Messstellen Pegel

Der Kartendienst (WMS-Gruppe) stellt die Daten der Hochwassergefahrenkarte und der Hochwasserrisikokarte der saarländischen Gewässer dar.:Messstelle Oberflächenwasser Pegel; Betrachtungsobjekt im GDZ, punkthafte Featureklasse (GDZ2010.wlowpgl);exportiert in Filegeodatabase Außer zahlreichen Datenbankinterenen Attributen sind folgende anwenderrelevante Attribute vorhanden: PGLG1 = Pegel Lage (Entfernung von der Mündung) PGLG2 = Pegel Lage (Entfernung und Seite oberhalb der Mündung) PGNP = Pegelnullpunkt MSTNR = Messstellennummer MSTBEM = Messstelle Bemerkung; Maßstabsbeschränkung: Min 1:50.000, Max 1:3000.

Wasser_Internet - Messstellen Pegel

Der Kartendienst (WMS Gruppe) stellt ausgewählte Wasserdaten des Saarlandes dar.:Messstelle Oberflächenwasser Pegel; Betrachtungsobjekt im GDZ, punkthafte Featureklasse (GDZ2010.wlowpgl);exportiert in Filegeodatabase Außer zahlreichen Datenbankinterenen Attributen sind folgende anwenderrelevante Attribute vorhanden: PGLG1 = Pegel Lage (Entfernung von der Mündung) PGLG2 = Pegel Lage (Entfernung und Seite oberhalb der Mündung) PGNP = Pegelnullpunkt MSTNR = Messstellennummer MSTBEM = Messstelle Bemerkung

Wasser_WFS - Messstellen_Pegel - OGC WFS Interface

Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Wasser dar.:Messstelle Oberflächenwasser Pegel

Automatisierung von Aufbau und Betrieb zweidimensionaler hydrodynamisch-numerischer Modelle im Rahmen verkehrswasserbaulicher Anwendungen

Ziel des FuE-Vorhabens ist es, ein Konzept und die notwendige Software für den automatisierten Aufbau und Betrieb verkehrswasserbaulicher zweidimensionaler hydrodynamisch-numerischer Modelle (2D-HN-Modelle) zu entwickeln. Mit der zu entwickelnden Software sollen für bereits kalibrierte 2D-HN-Modelle automatisch Szenarien berechnet, ausgewertet und deren Ergebnisse online bereitgestellt werden. Aufgabenstellung und Ziel Zur Beantwortung unterschiedlicher flussbaulicher Fragestellungen werden in der Abteilung Wasserbau im Binnenbereich zahlreiche zweidimensionale hydrodynamisch-numerische Modelle vorgehalten, die bereits umfassende Streckenabschnitte der frei fließenden Binnenwasserstraßen in hoher räumlicher Auflösung abdecken. Die Bearbeitungszyklen dieser Modelle, von der Konzeption über den Modellaufbau, die Kalibrierung und die Validierung bis hin zur Anwendung, sind durch lange Bearbeitungszeiten geprägt. Der spätere Rechenbetrieb eines kalibrierten und validierten Modells kann jedoch zu großen Teilen standardisiert und automatisiert erfolgen und dadurch vereinfacht und beschleunigt werden. Der Rechenbetrieb beruht im Wesentlichen auf der Berechnung von verschiedenen Szenarien (stationäre Abflüsse, Abflussganglinien), die auf derselben Variante (Geometrie, Landnutzung etc.) basieren. Hierbei müssen die Randbedingungen und Anfangsbedingungen des Modells jeweils entsprechend dem Szenario angepasst werden. Die Erzeugung dieser Szenarien lässt sich gut automatisieren. Die nötigen Anpassungen der Randbedingungen können hierbei entweder vom Anwender oder aber vollautomatisiert, beispielsweise auf Basis aktueller Pegelkennwerte, durchgeführt werden. Zusätzlich kann für die gerechneten Szenarien automatisiert eine standardisierte Auswertung erstellt und online für die interne und externe Nutzung bereitgestellt werden. Ziel des FuE-Vorhabens ist es, ein Konzept und die notwendige Software für den automatisierten Betrieb flussbaulicher 2D-HN-Modelle zu entwickeln. Mit der zu entwickelnden Software sollen sich für bereits fertig kalibrierte Modelle automatisch Szenarien durchführen, auswerten und deren Ergebnisse online bereitstellen lassen. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Verschiedene Bedarfsträger können in kurzen Aktualisierungszyklen standardisierte Ergebnisse aus den numerischen Modellen der BAW erhalten. Neben den flussbaulichen Projekten der WSV für Ausbau und Unterhaltung der Bundeswasserstraßen stehen hier u. a. Aufgaben wie großräumige Befahrbarkeitsanalysen, Verkehrssimulationen, der DAS-Basisdienst oder die Veröffentlichung schifffahrtsrelevanter Daten im Rahmen der Open-Data-Strategie im Fokus der Anwendung. Langfristig ist der Ausbau für einen operationellen Betrieb zur Bereitstellung aktueller hydraulischer Informationen für die Schifffahrt auf Grundlage hydrologischer Mess- oder Vorhersagedaten vorgesehen. Untersuchungsmethoden Für die Entwicklungen werden bereits vorliegende kalibrierte zweidimensionale numerische Modelle herangezogen, sodass eine zügige Umsetzung der Zielsetzungen erreicht werden kann. Für den automatisierten Betrieb müssen zunächst die Eingangsdaten für die automatisierte numerische Modellierung standardisiert werden. Der Workflow besteht aus drei Schritten: der Modellgenerierung basierend auf den standardisierten Eingangsdaten, der Durchführung der Rechnung auf den Hochleistungsrechnern der BAW und schließlich der Ergebnisaufbereitung und -analyse. Alle drei Schritte werden über ein Softwareprodukt umgesetzt, das auf die in der Abteilung vorliegenden Python-Bibliotheken zurückgreift. So wird gewährleistet, dass Anpassungen an zukünftige Anforderungen BAW-intern einfach umgesetzt werden können.

Der Einfluss klimatischer Veraenderungen und anthropogener Eingriffe auf die spaetglaziale-holozaene Flussdynamik der Werra

In diesem Projekt soll der Einfluss klimatischer Veraenderungen und anthropogener Eingriffe auf die Sedimentdynamik der Werra in den vergangenen 15000 Jahren untersucht werden. Besondere Aufmerksamkeit wird dabei dem Uebergang von der letzten Kaltzeit zum Holozaen, dem Waermeoptimum mit den beginnenden anthropogenen Eingriffen und dem Beginn der intensiven Besiedlung gewidmet. Raeumlich konzentrieren sich die Untersuchungen auf die Auen- und Subrosionsbereiche der mittleren Werra, sowie auf die Subrosionssenken Moorgrund und Rhaeden/Grossensee. Insbesondere die Subrosionssenken weisen maechtige Sedimentpakete auf, die eine hohe zeitliche Aufloesung versprechen und pollenanalytisch meist gut auswertbar sind. Zum Vergleich werden ausgewaehlte Nebenfluesse (Felda und Ulster) der Werra in die Untersuchungen einbezogen. Damit ist es moeglich, sowohl die lokal bedingten Ereignisse als auch die regional bedeutenden Veraenderungen zu erfassen. Methodisch soll ein Beitrag zur stratigraphischen Gliederung junger fluvialer Sedimente und deren moegliche Aussage zu klimatischen und/oder anthropogenen Veraenderungen geleistet werden. Raeumlich wird der Uebergang vom Mittelgebirge in die staerker kontinental gepraegten Gebiete erfasst.

1 2 3 4 525 26 27