API src

Found 14 results.

Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden

Das Projekt "Glufosinat: Metabolismus in transgenen und nicht-transgenen Pflanzengeweben sowie Schicksal im Boden" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. Glufosinat (oder Phosphinotricin) ist ein vergleichsweise modernes Herbizid, das seit etwa 25 Jahren in Gebrauch ist. Bei der Verbindung handelt es sich um eine Aminosäure; üblicherweise bezeichnet man das DL-Racemat als Glufosinat, das L-Enantiomer als Phosphinothricin. Die Verbindung ist Teilstruktur eines von den Pilzen Streptomyces viridochromogenes und Streptomyces hygroscopicus produzierten natürlichen Antibiotikums (Tripeptid: L-Alanin-L-Alanin-L-Phosphinothricin). Neben seiner antibakteriellen Wirkung zeigt Glufosinat eine nicht-selektive herbizide Wirkung. Der antibakterielle und herbizide Effekt geht nur vom L-Enantiomer aus; das D-Enantiomer ist inaktiv. Sowohl Glufosinat (Racemat) als auch das Tripeptid (Bialaphos oder Bilanaphos; mit L-Enantiomer) werden als Herbizide vermarktet. Die herbizide Wirkung von Phosphinothricin beruht auf einer Inhibition der Glutaminsynthetase. Glufosinat weist günstige ökotoxikologische Eigenschaften auf, z.B. bezüglich Versickerung, Abbau sowie Toxizität gegenüber Tier und Mensch. Auf Grund dieser Eigenschaften ist Glufosinat ein geeigneter Kandidat zur Herstellung gentechnisch modifizierter Herbizid-resistenter Pflanzen, um Glufosinat auch selektiv - im Nachauflauf - einsetzen zu können. Dazu wurden verschiedene Spezies, wie z.B. die Zuckerrübe, mit dem bar-Gen aus Streptomyces hygroscopicus transformiert. Das bar-Gen codiert für eine Phosphinothricin-N-acetyltransferase, die Phosphinothricin zum nicht herbizid-wirksamen, stabilen N-Acetylderivat umsetzt. Bei entsprechend hoher Expression des bar-Gens resultiert eine Glufosinat-resistente Pflanze. Ein Ziel unseres Forschungsvorhabens war es, den Metabolismus von Glufosinat und der einzelnen Enantiomere (L- und D-Phyosphinothricin) in transgenen und nicht transgenen Pflanzenzellkulturen zu untersuchen. Die transgenen Kulturen, die von der Zuckerrübe (Beta vulgaris) stammten, waren mit dem bar-Gen transformiert, exprimierten demnach die Phosphinothricin-N-acetyltransferase. Sie wurden aus entsprechenden Sprosskulturen initiiert. Daneben wurden nicht-transgene Kulturen von Zuckerrübe, Karotte (Daucus carota), Fingerhut (Digitalis purpurea) und Stechapfel (Datura stramonium) untersucht. In einer zweiten Versuchsserie wurden abgetrennte Sprosse und Blätter von 20 Wildpflanzen auf den Metabolismus von Glufosinat untersucht. Es sollte überprüft werden, ob qualitative und quantitative Unterschiede im Umsatz des Herbizids im Pflanzenreich vorkommen und möglicherweise eine natürliche (teilweise) Resistenz gegenüber Glufosinat existiert. Schließlich wurde das Schicksal des Herbizids im Boden (Abbau, Versickerung) nach Aufbringung des Wirksstoffs in einer handelsüblichen Formulierung auf ein bewachsenes Versuchsfeld im Freiland untersucht.

Vorhaben 2.3.4.A

Das Projekt "Vorhaben 2.3.4.A" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Reaktive Strömungen und Messtechnik durchgeführt. Die TU Darmstadt entwickelt ein Laser-Hygrometer auf Basis der Tunable Diode Laser Absorption Spectroscopy (direkt-TDLAS) zur Zwei-Linien-Thermometrie an Hochdruck-Brennkammern. In einem zweiten Schritt wird planare laserinduzierte Fluoreszenz am OH-Radikal zur zeitlich hochaufgelösten Diagnostik in der Hauptreaktionszone einer Gasturbinenbrennkammer angewendet. Zunächst wird eine Selektion geeigneter Absorptionslinien und die Neubestimmung deren spektroskopischer Liniendaten durchgeführt. An die Charakterisierung der Laser schließt sich die Konzeption des Spektrometers und die Erprobung an einem Modellbrenner der RSM-Hochdruckkammer an. Schließlich wird das Spektrometer zur Gastemperaturmessung an der Versuchsbrennkammer HBK2(DLR Köln) eingesetzt. Des Weiteren wird die Eignung der Nutzung des an den Brennkammerwänden entstehenden Streulichts untersucht. Im Bereich der Highspeed - OH- PLIF wird die Einkopplung der UV-Laserstrahlung in die Brennkammer realisiert. Darauffolgend erfolgt die PLIF Messung am SCARLET Rig (HBK3) an der DLR Köln.

Untersuchung der Laser-induzierten Plasmaausbildung im Wasser beim Doppelpuls-LIBS bei einem hydrostatischen Druck von 60 MPa (LIBS60)

Das Projekt "Untersuchung der Laser-induzierten Plasmaausbildung im Wasser beim Doppelpuls-LIBS bei einem hydrostatischen Druck von 60 MPa (LIBS60)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Das Ziel des Forschungsvorhabens liegt in der grundlegenden Untersuchung der Kavitäts-/Plasmaausbildung und der Plasmastrahlung in einer Doppelpuls-LIBS-Anwendung an metallischen Proben unter Wasser bei einem Wasserdruck von bis zu 60 MPa. Zunächst ist hierfür die Laser-induzierte Kavität zu analysieren, um daraus Informationen über die Geometrie, Lebensdauer und die entstehende Schockwelle abzuleiten. Hierbei ist von besonderem Interesse, wie sich die wesentlichen Prozessparameter auf die Kavität auswirken und wie sich die Lebensdauer der Kavität steigern lässt. Des Weiteren sind Störquellen für die Kavitäts- bzw. Plasmaerzeugung von Interesse, wie das optische Durchbruchverhalten im Wasser in Abhängigkeit vom Wasserdruck. Weiterhin gilt es, die Voraussetzungen und die zeitlichen Perioden für die Emission von Linienstrahlung im Verhältnis zur Kontinuumstrahlung, herauszuarbeiten. Für die Elementanalyse durch LIBS ist die Untersuchung der Linienprofile von Interesse, hierbei insbesondere die Absorptions- und Verbreiterungsmechanismen eines Laser-induzierten Plasmas bei hohem Wasserdruck in Hinblick auf die Auswertbarkeit von Einzellinien. Mit diesem Wissen sollen Schlussfolgerungen auf die erforderliche Technik, geeignete Auswertemethoden und die erreichbare Genauigkeit für LIBS in der Tiefsee gezogen werden.

Teilvorhaben 2

Das Projekt "Teilvorhaben 2" wird vom Umweltbundesamt gefördert und von Schütz GmbH Meßtechnik durchgeführt. Ende 2012 waren in Deutschland etwa 7.500 Biogasanlagen in Betrieb und laut Prognose des Fachverbandes Biogas e. V. ist mit einem weiteren Anstieg zu rechnen. Beim Betrieb kann es an unterschiedlichen Stellen im Anlagensystem zu ungewollten Biogasemissionen kommen. Diese diffusen Emissionen haben negative Auswirkungen auf die Umwelt (Treibhausgasemissionen), auf das Image der Biogasanlage (Gestank), auf die Kosten (geringere Energieproduktion) und auf die Sicherheit der Anlage (Explosions- und Vergiftungsgefahr). Die Dichtheit der Anlagen und damit auch die Leckagensuche ist daher zwingend notwendig. Fraunhofer IPM, Fraunhofer UMSICHT und der Messtechnik-Spezialist Schütz Messtechnik GmbH arbeiten gemeinsam an der Entwicklung eines optischen Messsystems, das Leckagen an Biogasanlagen aus mehreren Metern Entfernung ortet. Ziel ist ein bildgebendes System, das schneller, empfindlicher und preisgünstiger als heutige Messgeräte ist. Handgehaltene schnüffelnde Geräte (Sniffer), die üblicherweise zur Gasdetektion eingesetzt werden, tasten Oberflächen aus einer Entfernung von wenigen Zentimetern punktuell ab - eine wenig praktikable Lösung für große, schwer zugängliche Anlagen. Für eine flächendeckende Ferndetektion von Gasleckagen werden daher heute Gaskameras eingesetzt, die austretendes Methan mittels Absorptionsspektroskopie nachweisen. Diese sind allerdings teuer, erfordern geschultes Personal und optimale Messbedingungen. Eine weitere Alternative sind laserbasierte Messgeräte, die nach dem Prinzip der Rückstreuspektroskopie arbeiten. Ein Nachteil dieser Technik ist, dass die Empfindlichkeit der Messungen stark von dem Vorhandensein eines Rückstreuers, wie z. B. einer glatten Rohrleitungsoberfläche, abhängig ist. Damit sind Messungen gegen den freien Horizont nicht möglich. Für die Ortung und Dokumentation fehlt diesen Messsystemen zudem eine Bildgebung. In dem Projekt 'BiogasDetektor' wird für die Ferndetektion von Gas erstmals das patentierte Prinzip der laserbasierten Emissionsspektroskopie genutzt. Zudem erweist sich die Emissionsspektroskopie als sehr gasspezifisch und wenig anfällig für Querempfindlichkeiten. In das Spektrum einer einzelnen Methanabsorptionslinie wird mit einem Quantenkaskadenlaser spezifisch Laserlicht eingestrahlt. Durch die Absorption wird das Molekül zu Schwingungen angeregt, die ihre Energie in Form von Wärmestrahlung abgeben. Ein infrarotempfindlicher Photodetektor misst die thermische Strahlungsemission und zeigt somit das Leck an. Eine integrierte Entfernungsmessung erlaubt es, den Methanhintergrund aus der Luft herauszurechnen und damit die relative Gaskonzentration sicherer zu bestimmen. Ziel ist sowohl ein handgehaltenes System für punktuelle Messungen zur Leckquantifizierung als auch ein Screening-Gerät zur Leckortung, das große Flächen schnell abtastet.

Teilvorhaben 1

Das Projekt "Teilvorhaben 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Physikalische Messtechnik durchgeführt. Ende 2012 waren in Deutschland etwa 7.500 Biogasanlagen in Betrieb und laut Prognose des Fachverbandes Biogas e. V. ist mit einem weiteren Anstieg zu rechnen. Beim Betrieb kann es an unterschiedlichen Stellen im Anlagensystem zu ungewollten Biogasemissionen kommen. Diese diffusen Emissionen haben negative Auswirkungen auf die Umwelt (Treibhausgasemissionen), auf das Image der Biogasanlage (Gestank), auf die Kosten (geringere Energieproduktion) und auf die Sicherheit der Anlage (Explosions- und Vergiftungsgefahr). Die Dichtheit der Anlagen und damit auch die Leckagensuche ist daher zwingend notwendig. Fraunhofer IPM, Fraunhofer UMSICHT und der Messtechnik-Spezialist Schütz Messtechnik GmbH arbeiten gemeinsam an der Entwicklung eines optischen Messsystems, das Leckagen an Biogasanlagen aus mehreren Metern Entfernung ortet. Ziel ist ein bildgebendes System, das schneller, empfindlicher und preisgünstiger als heutige Messgeräte ist. Handgehaltene schnüffelnde Geräte (Sniffer), die üblicherweise zur Gasdetektion eingesetzt werden, tasten Oberflächen aus einer Entfernung von wenigen Zentimetern punktuell ab - eine wenig praktikable Lösung für große, schwer zugängliche Anlagen. Für eine flächendeckende Ferndetektion von Gasleckagen werden daher heute Gaskameras eingesetzt, die austretendes Methan mittels Absorptionsspektroskopie nachweisen. Diese sind allerdings teuer, erfordern geschultes Personal und optimale Messbedingungen. Eine weitere Alternative sind laserbasierte Messgeräte, die nach dem Prinzip der Rückstreuspektroskopie arbeiten. Ein Nachteil dieser Technik ist, dass die Empfindlichkeit der Messungen stark von dem Vorhandensein eines Rückstreuers, wie z. B. einer glatten Rohrleitungsoberfläche, abhängig ist. Damit sind Messungen gegen den freien Horizont nicht möglich. Für die Ortung und Dokumentation fehlt diesen Messsystemen zudem eine Bildgebung. In dem Projekt 'BiogasDetektor' wird für die Ferndetektion von Gas erstmals das patentierte Prinzip der laserbasierten Emissionsspektroskopie genutzt. Zudem erweist sich die Emissionsspektroskopie als sehr gasspezifisch und wenig anfällig für Querempfindlichkeiten. In das Spektrum einer einzelnen Methanabsorptionslinie wird mit einem Quantenkaskadenlaser spezifisch Laserlicht eingestrahlt. Durch die Absorption wird das Molekül zu Schwingungen angeregt, die ihre Energie in Form von Wärmestrahlung abgeben. Ein infrarotempfindlicher Photodetektor misst die thermische Strahlungsemission und zeigt somit das Leck an. Eine integrierte Entfernungsmessung erlaubt es, den Methanhintergrund aus der Luft herauszurechnen und damit die relative Gaskonzentration sicherer zu bestimmen. Ziel ist sowohl ein handgehaltenes System für punktuelle Messungen zur Leckquantifizierung als auch ein Screening-Gerät zur Leckortung, das große Flächen schnell abtastet.

Entwicklung eines Messgeraetes zur Bestimmung von Schwermetallspuren in festen, fluessigen und gasforermigen Medien. Fuer Zwecke des Umweltschutzes und der Lebensmittelueberwachung

Das Projekt "Entwicklung eines Messgeraetes zur Bestimmung von Schwermetallspuren in festen, fluessigen und gasforermigen Medien. Fuer Zwecke des Umweltschutzes und der Lebensmittelueberwachung" wird vom Umweltbundesamt gefördert und von Universität Gießen, Fachgebiet Physik, I. Physikalisches Institut durchgeführt. Die Vorwaertsstreuung im transversalen Magnetfeld stellt eine neue Methode zur Bestimmung von Spuren von Elementen dar. Der Effekt beruht auf der Dispersion am Rande von Absorptionslinien. Zwischen gekreuzten Polarisatoren erhaelt man eine Aufhellung, die dem Quadrat der Konzentration des nachzuweisenden Elements proportional ist. Die Aufgabe im Rahmen des Forschungsvorhabens besteht darin, die Nachweisgrenzen fuer verschiedene Elemente zu ermitteln und Einfluesse auf den Signalverlauf, wie Fremdgasverbreiterung und Aenderungen der Lampenlinie zu untersuchen. Die Nachweisgrenze liegt derzeit fuer Hg im 10 exp-10 g- Bereich.

Entwicklung eines Mid-IR LIDAR-Systems

Das Projekt "Entwicklung eines Mid-IR LIDAR-Systems" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für die Physik des Lichts, Gruppe für Ultrakurz-Laserpulse und Lichtquellen durchgeführt. Der mittelinfrarote (MID IR) Spektralbereich, der sehr oft als molecular fingerprint Bereich bezeichnet wird, enthält starke Absorptionslinien, die die fundamentale Molekularvibrationen von atmosphärischen Gasen, Dämpfen und anderen Spurengasen und deren Oberschwingungen charakterisieren. Das sind Wasserdampf (H2O), der eine starke Absorption im ganzen Bereich zwischen 2.5 und 3um aufweist, Kohlenmonooxid (CO) mit starken Linien bei 2-2,8um, Stickstoffoxide (N2O) mit mehreren Absorptionslinien zwischen 2-4um. Die Transmissionsfenster der Atmosphäre zwischen 2,1 und 2,4um eignen sich besonders für die Detektion von mehreren atmosphärenverschmutzenden Gasen wie CO, CH4 und HF. Die existierenden LIDAR-Systeme für MID IR benutzen sehr komplizierte, ineffektive und teure OPO-Systeme. Das Fehlen von kompakten, effektiven und durchstimmbaren Laserquellen im MID IR ist das Haupthindernis für die Entwicklung und Anwendung eines LIDAR-Systems in diesem spektralen Bereich. Im Rahmen des Kooperationsprojektes planen wir die Entwicklung eines LIDAR-Systems für 2.1-2.4um mit einem durchstimmbaren Cr:ZnSe-Laser und der entsprechenden Patentdokumentation.

Teilprojekt D: TDLAS basiertes in-situ Hygrometer

Das Projekt "Teilprojekt D: TDLAS basiertes in-situ Hygrometer" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Reaktive Strömungen und Messtechnik durchgeführt. Die TU Darmstadt entwickelt ein Laser-Hygrometer auf Basis der Tunable Diode Laser Absorption Spectroscopy (direkt-TDLAS) zur Untersuchung von Containmentphänomenen im Verlauf schwerer LWR-Störfälle. Die vorgesehenen Arbeiten zielen auf die Adaption der direkten direkt-TDLAS für die absolute Quantifizierung gasförmigen Wassers in einem gemischtphasigen System bei Koexistenz gasförmigen und flüssigen Wassers. In der Konzeptphase wird die Selektion geeigneter Absorptionslinien durch Datenbank- und Literaturrecherche durchgeführt. Nach der Auswahl schließt sich die Verifizierung und evtl. eine Neubestimmung der spektroskopischen Liniendaten an, die die Beschaffung geeigneter Laser ermöglicht. Die anschließende Lasercharakterisierung und die parallel durchzuführenden Design- und Konstruktionsarbeiten wird die Spektrometerkonzeption abschließen. Die Kernkomponenten des Spektrometers werden in einer kontrollierten Laborumgebung aufgebaut, optimiert und charakterisiert. Der Bau des Sensorkopfes, die Anbindung an die Faserstrecke und die Integration der Spektrometerkomponenten in den Sensorkopf erfolgt im Anschluss an die Spektrometercharakterisierung. Daraufhin werden alle Komponenten und das Gesamtsystem getestet, optimiert und für den Einsatz in den großtechnischen Versuchsanlagen vorbereitet. Es werden Messungen an den Großanlagen über Zeiträume von Tagen bis wenige Wochen Länge durchgeführt und die Ergebnisse mit den anderen im Verbund beantragten Messmethoden verglichen.

Teilvorhaben: Hocheffiziente Terahertz Emitter und Detektoren

Das Projekt "Teilvorhaben: Hocheffiziente Terahertz Emitter und Detektoren" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut (HHI) durchgeführt. Gesamtziel des Verbundprojektes HORATIO ist ein kompaktes 'continuous-wave' (cw) THz-Sensorsystem zur Detektion toxischer und explosiver Gase. Als Plattform dient ein cw THz-Sensorsystem, das bei der optischen Telekommunikations-Wellenlänge von 1,5 Mikro m betrieben wird. Gegenüber den bisher hauptsächlich eingesetzten Kurzpuls-THz-Systemen bietet ein cw THz System signifikante Vorteile in Bezug auf Kosten, Robustheit und Frequenzauflösung. Essenzieller Bestandteil des geplanten Sensorsystems sind die sogenannten Photomischer, ohne die das elektrische THz-Signal nicht erzeugt werden kann. Der Einsatz eines cw THz-Systems in der Gassensorik ist durch die derzeit existierenden Komponenten jedoch nur eingeschränkt möglich. Zum einen lässt sich durch die derzeit nutzbare Bandbreite nur ein Teil der relevanten Gase detektieren, zum anderen sorgt der verfügbare Dynamikbereich dafür, dass heutige Messstrecken auf eine Länge von 1-2 m limitiert sind. Ziel des Teilvorhabens 'Hocheffiziente Terahertz Emitter und Detektoren' am Fraunhofer HHI ist es diese Defizite durch leistungsstärkere THz-Emitter und sensitivere THz-Detektoren zu beheben. Zum einen soll so der nutzbare Frequenzbereich auf über 2 THz ausgedehnt werden. Dies ist deshalb von Bedeutung, weil im Zielbereich zwischen 0,5-2,5 THz besonders viele Absorptionslinien sicherheitsrelevanter Gase existieren. Zum anderen wird die Steigerung des Signal-zu-Rausch-Verhältnisses (SNR) längere Messstrecken ermöglichen. Dies dient unter anderem zur Verbesserung der Sensitivität des Sensorsystems, da ein höheres SNR die Konstruktion von langen Multipfadzellen erlaubt.

Isotopenselektiver Sensor für kurzkettige Kohlenwasserstoffe

Das Projekt "Isotopenselektiver Sensor für kurzkettige Kohlenwasserstoffe" wird vom Umweltbundesamt gefördert und von Hochschule für Angewandte Wissenschaften Hamburg, Department Maschinenbau und Produktion M+P durchgeführt. Die Messung von Kohlenwasserstoffkonzentrationen und deren isotopische Zusammensetzung ist essentiell für viele Applikationen von der medizinischen Diagnostik und Umweltforschung bis hin zur Erdgasexploration. Die Messung von Methan Isotopenverhältnis (13CH4:12CH4) ist für das Verständnis des Kohlenstoffkreislaufs der Erde sehr wichtig. Während der Beitrag anthropogener fossiler Energieträger um die 8 Gigatonnen atmosphärischen Kohlenstoff pro Jahr umfasst (GtC/Jahr), repräsentiert der arktische Permafrostboden mindestens 600 GtC und der Ozean über 11000 GtC. Die Freisetzung eines geringen Bruchteils vom Permafrostboden oder des Ozeans durch Erwärmung der polaren Troposphäre kann zu schwerwiegenden klimatischen Effekten führen. Die isotopische Signatur von Methan erlaubt die Rückverfolgung des Ausflusses zu seinen verschiedenen ökologischen und anthropogenen Quellen. Das Mischverhältnis von nicht-Methan-Kohlenwasserstoffen (NMHC) sind hilfreiche Indikatoren von atmosphärischen Oxidations- und Transportprozessen auf regionaler bis hin zur globalen Ebene. Obwohl die Anzahl der Studien von NMHC-Isotopologen noch sehr begrenzt ist, kann die Messung davon zusätzliche Einblicke in die Quellen, Senken und Verteilung in der Atmosphäre liefern und ermöglicht einem das photochemische Alter der einzelnen Kohlenwasserstoffe abzuschätzen. Insgesamt sind diese Informationen sehr wichtig um atmosphärische Modelle zu verifizieren und zu verbessern. Stand der Technik für die Messung von Kohlenstoffisotopen der vergangen 30 Jahre ist die Isotopenverhältnis-Massenspektrometrie (IRMS). Die Messmethode ist sehr präzise, aber zugleich arbeitsaufwendig, teuer und wird typischerweise in einem Labor durchgeführt, wodurch Feldmessungen in Echtzeit unmöglich werden. IRMS ist außerdem indirekt, da der Kohlenwasserstoff in einem Verbrennungsprozess zuerst in CO2 umgewandelt werden muss und dieser dann für das 13C-Verhältnis analysiert wird. Das Ziel dieses Projektes besteht in der Entwicklung eines optischen Sensors, welches die direkte isotopenselektive Messung von kurzkettigen Kohlenwasserstoffen erlaubt. Als mögliches neues Analysegerät soll ein Diodenlaser auf Halbleiterbasis eingesetzt werden. Diese Emissionsquellen erlauben unter Raumtemperatur-Betrieb kontinuierliche Strahlung zwischen 3,0 Mikro m und 3,5 Mikro m. Diese spektrale Region beinhaltet die stärksten Absorptionslinien von Kohlenwasserstoffen. Der Laser ist kompakt, einfach in der Handhabung und seine optische Rückkopplung erlaubt kontinuierliches und modensprungfreies Durchstimmen bei einer spektralen Linienbreite kleiner als 10 MHz. Aufgrund der vorteilhaften Eigenschaften wird die photoakustische Spektroskopie (PAS) verwendet. Dieses Messverfahren basiert auf Absorption von modulierter Strahlung und die dadurch hervorgerufene Erzeugung einer Schallwelle. Als eine offsetfreie Technik ermöglicht diese eine sehr hohe Nachweisempfindlichkeit. Messungen sollen an Methan, Ethan und Propan durchgeführt werden.

1 2