Der Ozean im Westpazifik ist mit Temperaturen von ganzjährig 30°C der wärmste Ozean der Welt. Im tropischen Westpazifik ist die Lufttemperatur der Grenzschicht weltweit am höchsten und die Ozonkonzentration am niedrigsten. Aufgrund der allgemeinen Advektion der Luftmassen in der unteren und mittleren Troposphäre aus dem Osten durch die Walker-Zirkulation über den Pazifik befindet sich die Luft über dem tropischen Westpazifik für längere Zeit in einer sauberen, warmen und feuchten Umgebung. Der Abbau von reaktiven Sauerstoff- und Ozonvorläufern wie NOx findet daher länger als anderswo in den Tropen, was zu sehr niedrigen Ozonkonzentrationen führte. Dies erhöht die Lebensdauer von kurzlebigen biogenen und anthropogenen Spurengasen. Darüber hinaus begünstigen hohe Meeresoberflächentemperaturen eine starke Konvektion im tropischen Westpazifik, was zu niedrigen Ozonmischungsverhältnissen in den konvektiven Ausflussgebieten in der oberen Troposphäre führen kann. Der Warmpool im Westpazifik ist auch eine wichtige Quellregion für stratosphärische Luft. Daher fallen die Region, in der die Lebensdauer kurzlebiger Spurengase erhöht ist, und die Quellregion der stratosphärischen Luft zusammen. Somit bestimmt die Zusammensetzung der troposphärischen Atmosphäre in dieser Region in hohem Maße auch die globale stratosphärische Zusammensetzung.Ozon ist aufgrund von Rückkopplungsprozessen zwischen Temperatur, Dynamik und Ozon ein wichtiges Spurengas in der Klimaforschung. Da der Warmpool im Westpazifik die Hauptquellenregion für stratosphärische Luft ist, ist die Kenntnis von Ozon und anderen kurzlebigen Spurengasen auch wichtig, um den Transport von Spurengasen in die Stratosphäre zu verstehen.Ziel unseres Projektes ist die Messung des Tagesgangs von Ozon und anderen Spurengasen mit Hilfe der hochauflösenden solaren Absorptions-FTIR-Spektroskopie. Die Messungen liefern die Gesamtsäulendichten von bis zu 20 Spurengasen. Für einige Spurengase erlaubt die Analyse der Spektrallinienform die Ableitung der Konzentrationsprofile in bis zu etwa vier atmosphärischen Höhenschichten. Ergänzt werden die Beobachtungen durch Ozonballonsondierungen, kontinuierliche Messungen der UV-Strahlung, und Modellrechnungen mit einem Chemie-Transport-Modell. Die Messungen sind für den Zeitraum August bis Oktober 2022 geplant, die Auswertung und Interpretation von November 2022 bis Januar 2023.
Ziel dieses Projektes ist die Beschreibung von Strömungsmustern über ästuarinen Bodenformen anhand von Rinnenexperimenten und numerischen Simulationen. Bodenformen (Riffel und Dünen) sind weitverbreitete Bestandteile von Flüssen, Ästuaren, Küstengewässern- und Tiefseegebieten. Bodenformen liefern Hinweise auf Richtung und Stärke von Sedimenttransportprozessen, haben einen starken Einfluss auf die über ihnen liegende Strömung und sind zudem von großer sozioökonomischer Bedeutung, z. B. hinsichtlich ihrer Auswirkungen auf die Schiffbarkeit der Gewässer. In vielen Ästuaren bilden sich aufgrund der starken Hydrodynamik und der hohen Verfügbarkeit von sandigen Sedimenten große Bodenformfelder. Die Strömung über diesen Bodenformfeldern unterscheidet sich grundlegend von der Strömung über den bekannten, dreieckigen Bodenformen mit einem Neigungswinkel von 30°, die bisher im Fokus von Labor- und numerischen Modellierungsstudien standen. Ästuarine Bodenformen sind hauptsächlich flachgeböschte Dünen mit mittleren Luvwinkeln von 5 bis 20°. Die Strömungseigenschaften über derartigen, flachen Winkeln sind derzeit nicht genau bekannt. So ist zum Beispiel der Zusammenhang zwischen der Neigung der Leeböschung und dem Vorhandensein oder Fehlen einer intermittierenden oder permanenten Strömungsablösung noch nicht ausreichend verstanden. Außerdem haben ästuarine Dünen ein relativ flaches Tal und steile Böschungen in der Nähe des Kammes, während Flussdünen einen flachen Kamm und in der Nähe des Tals steile Böschungen haben. Die Auswirkungen dieses Unterschieds in der Dünenmorphologie auf die Strömung sind derzeit noch unbekannt. Darüber hinaus wurde der Zusammenhang zwischen einer sich in der Richtung ändernden Gezeitenströmung und der natürlichen Morphologie von Dünen, einschließlich der dreidimensionalen Variationen, noch nicht im Detail untersucht.Im Rahmen der vorgeschlagenen Studie werden mehrere Versuchsreihen in einer großen Laborrinne durchgeführt, um die Strömungseigenschaften (Geschwindigkeit und Turbulenz) über an Ästuardünen angelehnten Modelldünen aus Beton zu charakterisieren. Basierend auf Feldmessungen von Bodenformen in der Weser werden drei Dünenformvarianten untersucht: Steilgeböschte asymmetrische Dünen, flachgeböschte asymmetrische Dünen und flachgeböschte symmetrische Dünen. Darüber hinaus werden hochauflösende numerische Simulationen der Strömung über dreidimensionalen Bodenformfeldern die Rinnenexperimente ergänzen. Mithilfe der Modellsimulationen ist es möglich, die Geschwindigkeitsstrukturen der Gezeitenströmung und die Turbulenzstrukturen über natürlichen, in der Weser vorkommenden Dünenfeldern zu bestimmen. Die Ergebnisse dieses Projekts tragen zu einem besseren Verständnis der komplexen Wechselwirkungen zwischen ästuarinen Dünen und der Gezeitenströmung bei und erlauben eine bessere Parametrisierung der kleinräumigen Prozesse in großräumigen hydro- und morphodynamischen Modellen.
Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
Der Verlauf der atmosphärischen CO2-Konzentrationen während der vergangenen Klimazyklen ist durch ein Sägezahnmuster mit Maxima in Warmzeiten und Minima in Kaltzeiten geprägt. Es besteht derzeit Konsens, dass insbesondere der Süd Ozean (SO) eine Schlüsselfunktion bei der Steuerung der CO2-Entwicklung einnimmt. Allerdings sind die dabei wirksamen Mechanismen, die in Zusammenhang mit Änderungen der Windmuster, Ozeanzirkulation, Stratifizierung der Wassersäule, Meereisausdehnung und biologischer Produktion stehen, noch nicht ausreichend bekannt. Daten zur Wirkung dieser Prozesse im Wechsel von Warm- und Kaltzeiten beziehen sich bislang fast ausschließlich auf den atlantischen SO. Um ein umfassendes Bild der Klimasteuerung durch den SO zu erhalten muss geklärt werden, wie weit sich die aus dem atlantischen SO bekannten Prozesswirkungen auf den pazifischen SO übertragen lassen. Dies ist deshalb von Bedeutung, da der pazifische SO den größten Teil des SO einnimmt. Darüber hinaus stellt er das hauptsächliche Abflussgebiet des Westantarktischen Eisschildes (WAIS) in den SO dar. Im Rahmen des Projektes sollen mit einer neu entwickelten Proxy-Methode Paläoumwelt-Zeitreihen an ausgewählten Sedimentkernen von latitudinalen Schnitten über den pazifischen SO hinweg gewonnen werden. Dabei handelt es sich um kombinierte Sauerstoff- und Siliziumisotopenmessungen an gereinigten Diatomeen und Radiolarien. Es sollen erstmalig die physikalischen Eigenschaften und Nährstoffbedingungen in verschiedenen Stockwerken des Oberflächenwassers aus verschiedenen Ablagerungsräumen und während unterschiedlicher Klimabedingungen beschrieben werden. Dies umfasst Bedingungen von kälter als heute (z.B. Letztes Glaziales Maximum) bis zu wärmer als heute (z.B. Marines Isotopen Stadium, MIS 5.5). Die Untersuchungen geben Hinweise zur (1) Sensitivität des antarktischen Ökosystems auf den Eintrag von Mikronährstoffen (Eisendüngung), (2) Oberflächenwasserstratifizierung und (3) 'Silicic-Acid leakage'-Hypothese, und tragen damit zur Überprüfung verschiedener Hypothesen zur Klimawirksamkeit von SO-Prozessen bei. Die neuen Proxies bilden überdies Oberflächen-Salzgehaltsanomalien ab, die Hinweise zur Stabilität des WAIS unter verschiedenen Klimabedingungen geben. Darüber hinaus kann die Hypothese getestet werden, nach der der WAIS während MIS 5.5 vollständig abgebaut war. Die Projektergebnisse sollen mit Simulationen mit einem kombinierten biogeochemischen (Si-Isotope beinhaltenden) Atmosphäre-Ozean-Zirkulations-Modell aus einem laufenden SPP1158-DFG Projekt an der CAU Kiel (PI B. Schneider) verglichen werden. Damit sollen die jeweiligen Beiträge der Ozeanzirkulation und der biologischen Produktion zum CO2-Austausch zwischen Ozean und Atmosphäre getrennt und statistisch analysiert werden. Informationen zu Staubeintrag, biogenen Flussraten, physikalischen Ozeanparametern und zur Erstellung von Altersmodellen stehen durch Zusammenarbeit mit anderen (inter)nationalen Projekten zur Verfügung.
Die Grenzfläche zwischen Ozean und Atmosphäre ist durch einen allgegenwärtigen, < 1 mm dicken marinen Oberflächenfilm, den sogenannten sea-surface microlayer (SML), charakterisiert. Der SML ist nicht nur direkter UV-Strahlung und atmosphärischen Oxidantien ausgesetzt, sondern zeichnet sich im Vergleich zum unterliegenden Wasser auch durch höhere Konzentrationen an organischen Stoffen aus. Bisher ist unklar, welche Bedeutung die dadurch bedingten SML-spezifischen abiotischen Prozesse für die Umsetzung und die Emission organischer Stoffe insgesamt haben und wie man diese Prozesse parametrisieren kann. In diesem Projekt, das eng mit anderen Projekten der interdisziplinären Forschungsgruppe â€ÌBiogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS)â€Ì verbunden ist, sollen daher molekulare Details SML-spezifischer Reaktionen (Photochemie, heterogene Oxidation, Radikalchemie) genauer untersucht werden. Ziel ist es, Reaktionsprodukte und -geschwindigkeiten quantitativ zu erfassen und Unterschiede zwischen Reaktionen im SML und in der freien Wassersäule herauszuarbeiten. Basierend auf der Expertise der drei beteiligten Arbeitsgruppen im Bereich Photochemie, Reaktionskinetik, Laserspektroskopie, Analytik und theoretischer Modellierung, soll ein molekulares Verständnis ausgewählter Reaktionen und des Einflusses der komplexen SML-Reaktionsumgebung erreicht werden. Dazu sollen experimentelle Verfahren wie Schwingungs-Summenfrequenzerzeugung, hochempfindliche Chromatographie-Massenspektrometrie und gepulste Laserphotolyse-Langwegabsorption mit Methoden der Quantenchemie und Molekulardynamik kombiniert werden. Arbeitsschwerpunkte bilden die Oxidationskinetik von Halogen- bzw. Hydroxyl-Radikalreaktionen in der flüssigen Phase, die Ozonolyse von Fettsäure-Monoschichten und die durch Photosensibilisatoren verstärkte Bildung von reaktiven Radikalen bzw. Zersetzung von organischen Schichten. Neben wohldefinierten Labor-Modellsystemen werden auch natürliche Proben analysiert werden. Dabei stellt sich z.B. die Frage nach den Einflussfaktoren der während einer Algenblüte zunehmenden Bildung von oberflächenaktiven Stoffen im SML und der Bedeutung der durch die Sonne bedingten Photolyse auf die abiotische Umsetzung organischer Stoffe. Flankierend werden im Projekt auch die eingesetzten Untersuchungsmethoden weiterentwickelt; das beinhaltet sowohl die Ausarbeitung von Messprotokollen zur Quantifizierung bestimmter organischen Substanzklassen (z.B. Carbonyle und Kohlenhydrate) im SML, die Synthese und Charakterisierung von neuartigen oberflächenaktiven Photosensibilisatoren (z.B. Benzoyl-Benzoesäure-funktionalisierte Lipide) sowie die Entwicklung und Erprobung mehrstufiger Modellierungsverfahren zur theoretischen Beschreibung von Struktur-Reaktivitätsbeziehungen der Fettsäure-Ozonolyse (z.B. Beschreibung des Einflusses sterischer und elektronischer Effekte der organischen Matrix).
Unsere Motivation liegt in der Tatsache, dass die dynamische Verbindung zwischen dem marinen Oberflächenfilm (engl. sea-surface microlayer, SML) und der darunterliegenden oberflächennahen Wasserschicht über Konvektion zu heterogenen Eigenschaften der SML führt. Dies wiederum steuert das Ausmaß der bio-photochemischen Reaktionen und des Gasaustausches zwischen dem Ozean und der Atmosphäre. Die Konvektion wird durch Verdunstung angetrieben, die die SML abkühlt und es salzhaltiger macht. Infolgedessen wird die SML dichter, sinkt ab und wird durch das darunterliegende Wasser ersetzt. Die auftriebsgetriebene Konvektion wurde jedoch bei der Erforschung der SML und des Gasaustausches als dynamisches Bindeglied zwischen der Atmosphäre und dem Ozean vernachlässigt. Unser Hauptziel ist es, ein mechanistisches Verständnis der Dynamik zwischen der SML und der oberflächennahen Wasserschicht zu beschreiben. Ein mechanistisches Verständnis der Konvektion ist wichtig, da das Ausmaß der bio-photochemischen Reaktionen und Austauschprozessen von Spurengasen, Energie und Impuls letztlich durch Austauschprozesse zwischen der SML und der oberflächennahen Wasserschicht und schließlich mit tieferen Schichten bestimmt wird. Wir werden einen experimentellen Aufbau mit mehreren profilierenden Mikroelektroden und einem optischen Schlierensystem entwickeln, um die Konvektion unter verschiedenen externen Antrieben zu untersuchen. Wir werden den Effekt der horizontalen Strömung aufgrund von Gradienten der Oberflächenspannung (d.h. Marangoni-Effekt) untersuchen. Wir werden auch an dem gemeinsamen Mesokosmen-Experiment BASS teilnehmen, um den Einfluss biogener Tenside auf den konvektiven Transportmechanismus zwischen der SML und der oberflächennahen Wasserschicht zu untersuchen. Im gemeinsamen Feldexperiment BASS werden wir der Frage nachgehen, inwieweit Variationen der klein-skaligen Konvektion durch die Variabilität sub-mesoskaligen (1 km-10 km) und hydrodynamischen Prozessen nahe der Meeresoberfläche beeinflusst werden. Wir werden zwei Forschungskatamarane und eine Flotte von Treibbojen einsetzen, die mit Leitfähigkeits- und Temperatursensoren ausgestattet sind, um Dichteanomalien zwischen der SML und oberflächennahen Wasserschicht zu untersuchen. Wir werden externe ozeanische und atmosphärische Einflüsse beobachten, um die Dichteanomalien zu beschreiben. Schließlich werden wir die gewonnenen Erkenntnisse aus den Laborexperimenten, der Mesokosmos-Studie und der Feldstudie nutzen, um einen mathematischen Rahmen zur Beschreibung von Temperatur- und Salzgehaltsprofilen und deren Schwankungen unter dem Einfluss definierter ozeanischer und atmosphärischer Einflüsse zu entwickeln.
Pilze sind eine der am diversesten, jedoch am wenigsten untersuchten mikrobiellen Gruppen in marinen Gewässern. Eine Untergruppe der Pilze, kurz als Chytridien bekannt, umfasst häufig auftretende Parasiten auf Phytoplankton, welche eine starke Belastung für das Phytoplanktonwachstum, die Entwicklung von Algenblüten und deren Populationsdynamiken darstellen. Parasitäre Chytridien befallen alle Hauptgruppen von Phytoplankton und treten bevorzugt in Küstenregionen mit hoher Phytoplanktonbiomasse und Produktivität auf. Die Auswirkungen von parasitären Pilzen auf Stoffkreisläufe und die Funktion von Ökosystemen sind jedoch kaum bekannt bzw. quantifiziert. Die Emmy Noether-Nachwuchsgruppe wird die funktionelle und quantitative Rolle parasitärer Pilze für die Phytoplanktonproduktivität und den Stoffkreislauf in Brack- und Meerwasser untersuchen. Unsere Ziele sind (1) Betrachtung der Wechselwirkungen zwischen Phytoplankton und Chytridien auf Einzelzell-Ebene, (2) Untersuchungen der integrativen Rolle von Chytridien in aquatischen Nahrungsnetzen und (3) Aufklärung der Auswirkungen von parasitären Pilzen auf Remineralisierungs- und Sedimentationsprozesse. Unser umfassender Ansatz beinhaltet experimentelle Studien mit Phytoplanktonâ€ÌPilz Co-Kulturen sowie mit natürlichen Planktongemeinschaften, mittels Analysen auf Zell- und Mikoskalen-Ebene bis hin zu mesoskaligen Stoffflüssen entlang der Wassersäule. Im Wesentlichen werden wir den Transfer von Kohlenstoff und Stickstoff vom Phytoplankton durch das pelagische Nahrungsnetz innerhalb der photischen Zone bis hin zum Absinken als Detritus in die Tiefe verfolgen. Das Projektergebnis soll ein ganzheitliches Verständnis der Rolle von Chytridien an der Basis aquatischer Nahrungsnetze und Produktivität fördern, einschließlich der zugrunde liegenden Mechanismen und Größenordnungen. Angesichts der potenziellen Signifikanz parasitärer Pilze für die Abschwächung von Produktivität, Sinkstoffflüssen aber auch von toxischen Algenblüten in Küstengebieten, sollen die gewonnenen Daten mit lokalen und globalen Stoffkreisläufen verknüpft und in zukünftige Entscheidungen zum Küstenmanagement implementiert werden.
Gasaustausch findet in der Atmosphäre primär durch turbulenten und laminaren Fluss statt. Im Boden dagegen spielt advektiver Gastransport eine untergeordnete Rolle, stattdessen dominiert Diffusion die Transportprozesse. Trotz der Unterschiedlichkeit und scheinbaren Unabhängigkeit dieser Prozesse wurde während Freilanduntersuchungen ein Anstieg von Gastransportraten im Boden um mehrere 10 % während Phasen starken Windes beobachtet. Dieser Anstieg ist auf wind-induzierte Druckfluktuationen zurückzuführen, die sich in das luftgefüllte Porensystem des Bodens fortpflanzen und zu einem minimal oszillierenden Luftmassenfluss führen (Pressure-pumping Effekt). Durch den oszillierenden Charakter des Luftmassenflusses ist der direkte Beitrag zum Gastransport sehr gering. Die damit einhergehende Dispersion führt jedoch zu einem Anstieg der effektiven Gastransportrate entgegen des Konzentrationsgradienten. Wird der Pressure-pumping (PP) Effekt bei der Bestimmung von Gasflüssen mit der Gradienten- und Kammermethode nicht berücksichtigt, kann dies zu großen Unsicherheiten in der Bestimmung von Bodengasflüssen führen. Insbesondere für das langfristige Monitoring von treibhausrelevanten Gasflüssen stellen diese Unsicherheiten ein zentrales Problem dar. Wir stellen vier Hypothesen auf:(H1) Der PP-Effekt ist abhängig von Bodeneigenschaften.(H2) Die Ausprägung von Luftdruckfluktuationen ist abhängig von der Rauigkeit verschiedener Landnutzungen (Wald, Grasland, landwirtschaftliche Kulturen, Stadt)(H3) Kammermessungen werden durch Luftdruckfluktuationen beeinflusst.(H4) Der Austausch und Umsatz von Methan in Böden von Mittelgebirgswäldern wird durch den PP-Effekt verstärkt. Die Hypothesen 1, 3 und 4 werden mittels Laboruntersuchungen von Proben verschiedener Böden und Bodenfeuchtebedingungen überprüft. Die Hypothese 2 wird durch Freilandmessungen an verschiedenen Standorten überprüft. Ziele des Vorhabens sind: (Z1) Modelle zu entwickeln, die die Quantifizierung des Einflusses der Bodenstruktur auf den PP-Effekt ermöglichen, (Z2) den Effekt der Oberflächenrauigkeit auf Luftdruckschwankungen zu quantifizieren, (Z3) Schwellenwerte zu definieren, die die Bestimmung von Standorten mit ausgeprägtem PP-Effekt ermöglichen, (Z4) Faktoren für die Berücksichtigung des PP-Effekts für Kammermessungen zu entwickeln, (Z5) Faktoren für die Berücksichtigung des PP-Effekts für die Gradienten Methode zu entwickeln, (Z6) den Einfluss des PP-Effekts auf die Methanaufnahme von Böden in Mittelgebirgswäldern zu bestimmen. Ein besseres Verständnis des bisher nur unzureichend untersuchten PP-Effekts wird wesentlich dazu beitragen, die Verlässlichkeit und Präzision von Messungen von Bodengasflüssen zu steigern, die die Grundlage für weitergehende Forschung darstellen.
Das Ziel dieser Studie ist zu verstehen, wie komplexe zeitliche und räumliche Prozesse die Biodiversität und funktionelle Diversität der mikrobiellen Gemeinschaft im Hainich CZE steuern. Ebenso wollen wir die dafür verantwortlichen Mechanismen entschlüsseln. Wir werden zur Hypothesenbildung mathematische Nahrungsnetzmodelle simulieren, und wie in der mikrobiellen Gemeinschaft sich die Biodiversität, funktionelle Diversität und Ökosystemfunktion verhalten. Die Hypothesen werden anhand empirischer Felddaten getestet. Dafür werden wir Daten der verschiedenen AquaDiva Projekte aus der ersten und zweiten Phase synthetisieren und analysieren.
In TP A02 (Kaliske) werden neue, bioinspirierte Ansätze für den wachstumsoptimierten Entwurf von technischen Strukturen aus Carbonbeton entwickelt. Biologische Entwicklungsprozesse natürlicher Strukturen (z. B. Wachstum von Pflanzen) führen auf ideale und effizient lastabtragende Systeme bei minimalem Materialeinsatz. Diese biologischen Entwicklungsprozesse und -prinzipien werden identifiziert, theoretisch-numerisch abgebildet (Multiphysik) und nach Diskretisierung auf Strukturebene in einen evolutionären Strukturgenerator überführt, der die langzeitoptimierten Grundprinzipien biologisch gewachsener Strukturen dem technischen Strukturentwurf zugänglich macht.
| Origin | Count |
|---|---|
| Bund | 469 |
| Type | Count |
|---|---|
| Förderprogramm | 469 |
| License | Count |
|---|---|
| offen | 469 |
| Language | Count |
|---|---|
| Deutsch | 132 |
| Englisch | 399 |
| Resource type | Count |
|---|---|
| Keine | 234 |
| Webseite | 235 |
| Topic | Count |
|---|---|
| Boden | 389 |
| Lebewesen und Lebensräume | 433 |
| Luft | 292 |
| Mensch und Umwelt | 469 |
| Wasser | 306 |
| Weitere | 469 |