Das Projekt "Zum Verständnis der Entstehung und Trajektorien von großem Hagel (LIFT)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Derzeitige radar-basierte Nowcastingverfahren basieren auf der Annahme, dass die zeitliche Entwicklung von Hagelereignissen in erster Linie durch Advektionsvorgänge gesteuert ist; die relevanten physikalischen Prozesse, die für die Entstehung und das Größenwachstum von Hagel entscheidend sind, bleiben dabei unberücksichtigt. In Verbindung mit der komplexen internen Struktur und Dynamik von Hagelstürmen ergeben sich daraus große Unsicherheiten bei der Vorhersage der Hagelgrößenverteilung und der von Hagel betroffenen Fläche am Boden. Das Ziel des Projekts LIFT (Large Hail Formation and Trajectories) ist es, die Hagelentstehung und Hageltrajektorien besser zu verstehen, um daraus als wichtige Komponenten eines physikalisch-basierten Nowcastings erstmals ein radar-basiertes Verfahren für das Hagelwachstums zu entwickeln. Zu diesem Zweck wird im Rahmen von LIFT eine Messkampagne Süddeutschland durchgeführt, wo die größte Hagelwahrscheinlichkeit in Deutschland auf vielfältige Beobachtungssysteme trifft, die im Rahmen der Messkampagne Swabian MOSES mit einem dichten Netzwerk betrieben werden. Zum ersten Mal werden im Rahmen von LIFT moderne Radargeräte, In-situ Messgeräte, Fotogrammetrie und numerische Modellierung synergistisch kombiniert und ein umfassender Datensatz zur Rekonstruktion der zeitlichen Entwicklung des Hagelwachstums erstellt. Betroffene Bürger werden aktiv in die Messaktivitäten mit einbezogen und aufgerufen, Hagelkörnern einschließlich ihrer Haupteigenschaften in die WarnWetter App des DWD zu melden. Die Messkampagne mit ihrem mobilen und flexiblen Konzept beinhaltet die Anwendung neuer, innovativer Messtechniken, darunter Lagrangesche Trajektorien mittels kleiner Messsysteme, die in die Wolken eingebracht werden, und dronengesteuerte Luftbildaufnahmen zur Bestimmung der Hagelspektren. Aus Fernerkundungsdaten gewonnene Signaturen von Hagelereignissen liefern Informationen über die Charakteristika der Hagelereignisse und werden mittels numerischer Simulationen sorgfältig auf Messungenauigkeiten und Sensitivitäten bzgl. atmosphärischer Umgebungsvariablen evaluiert. Indikatoren für die Hagelentstehung und das Hagelwachstum werden aus Beobachtungsdaten und Simulationen identifiziert, und liefern die Grundlage für ein beobachtungs-basiertes Hagelwachstumsmodell. Schließlich wird dieses Multi-Parameter Hagelwachstumsmodell mit den bestimmten Hageltrajektorien und Schmelzprozessen kombiniert, um zu bestimmen, welche Prozesse am wichtigsten sind für das Nowcasting von Hagel. Das Projekt LIFT liefert damit einen wichtigen Betrag für zukünftige radar-basierte Hagelwarnsysteme mit einer verbesserten Vorhersagezeit und Vorhersagequalität.
Das Projekt "Änderungen der Cant Speicherung und Änderungen in den Bildungsraten für Zwischen- Tiefen- und Bodenwasser im globalen Ozean, 1982 - 2015" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Fachbereich Erdsystemwissenschaften, Institut für Meereskunde.Die erste Antragsphase war auf die Bildungsraten und die Speicherung von anthropogenem Kohlenstoff (Cant) im Antarktischen Zwischenwasser (AAIW) fokussiert. Mit Hilfe von Freon (CFC) Daten konnten wir eine signifikante Reduktion der AAIW Bildungsrate von den 1990ern zu den 2000ern Jahren feststellen. Dies führte zu einer geringeren Steigerung der Cant Speicherung als vom atmosphärischen Cant Anstieg und einem unveränderten Ozean zu erwarten war. Um den Schwierigkeiten mit den Randbedingungen auszuweichen (Pazifisches AAIW strömt über die Drake Passage auch in den Atlantik und weiter in den Indischen Ozean) planen wir nun ein globales Vorgehen um in allen Ozeanen die Bildungsraten und Cant Speicherungen in den Zwischen- Tiefen- und Bodenwassermassen zu berechnen. Darüber hinaus wird der Zeitraum bis 2015 ausgedehnt, und wo immer die Datenlage es zulässt, Pentaden- anstatt Dekadenmittelwerte gebildet. Verwendet wird der aktualisierte GlODAPv2 Datensatz und eigene Daten.Die Berechnungen aus den Beobachtungen werden mit den Ergebnissen eines wirbelauflösenden globalen Ozeanmodells (1/10 Grad) kombiniert. Das POP Modell (Los Alamos Laboratory Parallel Ocean Program) mit eines horizontalen Auflösung von 0.1 Grad und 42 Tiefenstufen wird für die letzten 20 Jahre mit einem realistischen Forcing angetrieben und enthält außerdem die Freone als Tracer. Neben dem Vergleich mit einem klimatologischen Antrieb wird das Modell zur Weiterentwicklung der Tracer-Methode verwendet wir z.B. die Unsicherheit von zu wenig Datenpunkten und der Extrpolationsroutine auf die Bildungsraten / Cant Speicherungen. Ein weiterer wichtiger Punkt wird die Bestimmung der TTDs aus Lagrange Trajektorien und der Vergleich mit TTDs aus Tracermessungen sein, sowie die Untersuchung der Rolle der Wirbel, der Vermischung durch Wirbel und der vertikalen Vermischung.
Das Projekt "Kartierung von Klimagasen mittels spektroskopischer Messung von reflektiertem Sonnenlicht" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Urbane Emissionen von Kohlendioxid (CO2) und Methan (CH4) machen einen Großteil der Treibhausgasemissionen weltweit aus. Deshalb sind Städte auch Vorreiter bei der Entwicklung von Emissionsreduktionsmaßnahmen zur Mitigation des Klimawandels. Solche Maßnahmen müssen durch räumlich und zeitlich hochaufgelöste, vollständige, verlässliche und verifizierte Informationen begleitet und in Bezug auf ihre Effizienz überprüft werden. Unter den Beobachtungsmethoden für Treibhausgase gibt es allerdings eine Lücke im Bereich der horizontalen, flächendeckenden Kartierung auf der Skala einiger Kilometer. Dort braucht es eine Technik, die die Empfindlichkeitslücke zwischen lokalen in-situ Messungen und regional-integrierenden Säulenmessungen durch Fernerkundungsmessungen füllt.Hier schlage ich vor, urbane Treibhausgasquellen mit einer innovativen und portablen Technik zu studieren, die die CO2 und CH4 Konzentrationsfelder flächendeckend kartieren kann und so die Beobachtungslücke erfasst. Die erste Studienregion ist der Großraum Los Angeles, wo sich die CO2 und CH4 Emissionen auf mehr als 100 MtCO2/a und 300 ktCH4/a belaufen, was die Region zu einer der größten, lokalisierten Quellen weltweit macht. Los Angeles wurde in der Vergangenheit vielfältig in Bezug auf seine Treibhausgasquellen untersucht, indem beispielsweise Inventarisierungen durchgeführt und durch atmosphärische Messungen bewertet wurden. Ein herausragendes Experiment läuft gerade im Rahmen des CLARS-FTS (California Laboratory for Atmospheric Remote Sensing - Fourier Transform Spectrometer) – ein Spektrometer, das auf Mt. Wilson stationiert ist und reflektiertes Sonnenlicht aus dem Los Angeles Stadtgebiet einfängt. Wir haben eine portable Variante dieses Instruments entwickelt und schlagen nun vor beide Instrumente gemeinsam mit kalifornischen Partnern bei einer Feldkampagne zu betreiben.Dabei ist es unser Ziel das neue portable Observatorium zu validieren und für zukünftige Langfristvorhaben zu empfehlen. Dazu wollen wir innovative Beobachtungsmuster wie die Definition von Zoom-Regionen oder die Verwendung von gekreuzten Lichtwegen ausprobieren, um die räumliche und zeitliche Auflösung zu optimieren. Zudem werden wir die Genauigkeiten verbessern, indem wir einen neuen Ansatz der Strahlungstransportmodellierung implementieren, der simultan mit der Gasbestimmung auch die Streuung an atmosphärischen Partikeln berücksichtigt. Für die Fallstudie Los Angeles werden wir die Variabilität und die Gradienten der CO2 und CH4 Konzentrationen auf ihre Konsistenz mit den Emissionsinventaren überprüfen und untersuchen, bis zu welchem Grad sich die Einflüsse des meteorologischen Transports, der regionalen Advektion, episodischer Ereignisse und der urbanen Biosphäre unterscheiden lassen.
Das Projekt "Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2, Vorhaben: Die winterlichen Partikelflüsse innerhalb der Sauerstoff-Minimumzone SMZ vor Pakistan" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Eberhard Karls Universität Tübingen, Fachbereich Geowissenschaften, Geo- und Umweltforschungszentrum (GUZ), Arbeitsgruppe Klimatologie und Biosphäre.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Dynamik der Oberflaechen- und Zwischenwassermassen im Pleistozänen subantarktischen Pazifik (IODP Expedition 383 - DYNAPACC)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.Veränderungen im subantarktischen Südozean und ihre Wechselwirkungen mit der Atmosphäre werden als Schlüsselkomponenten für das Verständnis des Klimawandels auf orbitalen bis millennialen Zeitskalen angesehen. Schwankungen der Meereisbedeckung, Ozeanstratifizierung, biologischen Nährstoffnutzung und Ventilation von Zwischen- und Tiefwasser spielen eine Schlüsselrolle bei natürlichen Schwankungen pleistozäner atmosphärischer CO2-Konzentrationen. Wir planen, die Variabilität des Südozean-Zwischenwassers (SOIW) während der letzten ca. 1,5 Ma zu rekonstruieren in Bezug auf (1) Meeresoberflächen- und Thermoklinen-Stratifizierung, Temperatur- und Salzgehaltschwankungen (2) Ventilation und Karbonatchemie im Vergleich zu Zirkumpolarem Tiefenwasser (CDW) und daraus resultierende Kohlenstoffkreislauf-Änderungen, (2) mögliche Verbindungen zu niederen Breiten durch sog. Ozeantunnel. Wir verwenden einen Planktonforaminiferen Multispezies-Ansatz, bei dem stabile Isotope (18O, 13C, 11B) und Element-Geochemie (Mg/Ca, B/Ca) kombiniert werden. Unter Verwendung sowohl von oberflächennahen als auch tiefer in Thermoklinen bzw. Zwischenwasser lebenden Arten, kann eine Rekonstruktion der oberen ca. 500m Wassersäule erreicht werden, basierend auf zwei IODP-Sites, erbohrt während Expedition 383: U1541 vom pelagischen Ostpazifikrücken, und U1542 vom chilenischen Kontinentalrand. Frühere Arbeiten haben unterschiedliche Entwicklungen zwischen Oberflächen- und Thermoklinen-Charakteristika gezeigt, die auf Variationen der glazial-interglazialen SOIW Bildung oder lateraler Advektion hinweisen, möglicherweise verbunden mit Veränderungen der Westwinde. Stabile Kohlenstoffisotope werden verwendet, um die paläochemische Vorgeschichte zwischen SOIW und dem oberen Ozean zu rekonstruieren, während delta11B-Messungen Einblicke in Veränderungen der Carbonatchemie liefern sollen. Um eine zonale Rekonstruktion, als auch einen hochauflösenden Einblick in die sub-millenniale SOIW-Dynamik zu erhalten, soll IODP-Site U1542 Informationen über physikalischen Konditionierung und biogeochemischen Eigenschaften von SOIW liefern. SOIW versorgte potenziell die niederen pazifischen Breiten über den Ozeantunnel-Mechanismus mit Nährstoffen, die für die Steigerung der biologischen Primärproduktivität dort von entscheidender Bedeutung sind. Diese aus dem Süden stammende Nährstoffleckage wurde durch Zwischenwasserkonstruktionen aus dem Nordpazifik in Frage gestellt und ist Gegenstand anhaltender Debatten. Die beschriebenen Analysen werden durch hochauflösende XRF-Kernscandaten an beiden Sites ergänzt, um Änderungen der Produktivität, SE-Pazifischen Gyre und des antarktischen Zirkumpolarstrom in die Ergebnis-Interpretation einzubinden.
Das Projekt "Mobilisierung und Retention von Arsen an Redoxfronten bei advektivem Transport - Ein integrativer, multidisziplinärer Ansatz (AdvectAs)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Eberhard Karls Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Hydrogeology.Weltweit gefährden erhöhte Arsenkonzentrationen im Grundwasser die Gesundheit von mehr als 100 Millionen Menschen insbesondere in den dicht besiedelten Deltaregionen Süd- und Südostasiens. Aquifere mit hohem und niedrigem As-Gehalt sind durch unterschiedliche Redoxbedingungen gekennzeichnet und durch schmale Übergangszonen voneinander getrennt. Diese Fe dominierten Redoxfronten spielen hinsichtlich der Advektion und Retention von As eine entscheidende Rolle und schützen unbelastete Aquifere vor As Eintrag. Diese Schutzfunktion wird in Zukunft immer bedeutender, da die Grundwasserentnahme aufgrund des global zunehmenden Wasserbedarfs steigt und somit, durch erhöhte Advektionsraten, bisher nicht mit As belastete Grundwässer zusehends gefährdet. Trotz langjähriger Forschung bleibt ungeklärt, inwieweit und in welchem Ausmaß Fe dominierte Redoxfronten, insbesondere bei erhöhtem Grundwassertransport, der Kontamination von Grundwasser mit As entgegenwirken und verlangsamen können. Im Mittelpunkt unseres Projektes steht die Hypothese, dass die Langzeitstabilität und somit die Kontrollfunktion Fe dominierter Redoxfronten durch ein Zusammenspiel von (a) Transportprozessen, (b) mikrobieller Aktivität und (c) der Stabilität der Arsenträgerphasen (meist Fe Phasen) bestimmt wird. Wir nehmen an, dass sich sowohl Art und Menge an Fe Mineralen als auch die As Speziierung entlang des Redoxgradienten verändern und zwar in Abhängigkeit der verfügbaren Elektronendonatoren und -akzeptoren, der mikrobiellen Aktivität, der hydrogeochemischen Gradienten, sowie dem vorherrschenden Wassertransport. Weiter gehen wir davon aus, dass vertikale Austauschprozesse gelösten organischen Kohlenstoff aus den begrenzenden Aquitarden dem Aquifer zuführen, welches die Arsenmobilisierung weiter verstärkt. Übergeordnetes Ziel unseres Forschungsprojekts ist es, die Wissenslücken hinsichtlich der Arsenmobilität an Fe dominierten Redoxgrenzen durch einen bewusst integrativen und interdisziplinären Ansatz zu schließen, um die Gefährdung bisher nicht kontaminierter Grundwässer sachlich fundiert abschätzen zu können. Die fachübergreifenden Arbeiten sollen an einem Testfeld in Vietnam durchgeführt werden, welches durch viele gemeinsame Vorarbeiten sehr gut charakterisiert ist und sich als Modellstandort für unsere Fragestellungen bestens eignet. Alle erhaltenen Daten und Informationen werden in einem reaktiven Transportmodell zusammengeführt und so einheitlich interpretiert. Dieses Modell koppelt die grundlegenden biogeochemischen Prozesse mit den relevanten Transport- und Austauschmechanismen, so dass auch quantitative Vorhersagen über die zeitliche und räumliche Entwicklung der Redoxfronten bzw. der Arsenmobilität getroffen werden können. Ein vergleichbarer integrativer Ansatz, der von Beginn an und bewusst alle wesentlichen Fachrichtungen zur Beurteilung der As Dynamik einbezieht und gesicherte Prognosen erst ermöglicht wurde in dieser Form noch nicht unternommen.
Das Projekt "Untersuchungen des Tagesgangs verschiedener Spurengase mit Hilfe der solaren Absorptionsspektroskopie im infraroten Spektralbereich im tropischen Westpazifik (TROPAC)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Umweltphysik, Abteilung für Erdfernerkundung (Fernerkundung der Atmosphäre).Der Ozean im Westpazifik ist mit Temperaturen von ganzjährig 30°C der wärmste Ozean der Welt. Im tropischen Westpazifik ist die Lufttemperatur der Grenzschicht weltweit am höchsten und die Ozonkonzentration am niedrigsten. Aufgrund der allgemeinen Advektion der Luftmassen in der unteren und mittleren Troposphäre aus dem Osten durch die Walker-Zirkulation über den Pazifik befindet sich die Luft über dem tropischen Westpazifik für längere Zeit in einer sauberen, warmen und feuchten Umgebung. Der Abbau von reaktiven Sauerstoff- und Ozonvorläufern wie NOx findet daher länger als anderswo in den Tropen, was zu sehr niedrigen Ozonkonzentrationen führte. Dies erhöht die Lebensdauer von kurzlebigen biogenen und anthropogenen Spurengasen. Darüber hinaus begünstigen hohe Meeresoberflächentemperaturen eine starke Konvektion im tropischen Westpazifik, was zu niedrigen Ozonmischungsverhältnissen in den konvektiven Ausflussgebieten in der oberen Troposphäre führen kann. Der Warmpool im Westpazifik ist auch eine wichtige Quellregion für stratosphärische Luft. Daher fallen die Region, in der die Lebensdauer kurzlebiger Spurengase erhöht ist, und die Quellregion der stratosphärischen Luft zusammen. Somit bestimmt die Zusammensetzung der troposphärischen Atmosphäre in dieser Region in hohem Maße auch die globale stratosphärische Zusammensetzung.Ozon ist aufgrund von Rückkopplungsprozessen zwischen Temperatur, Dynamik und Ozon ein wichtiges Spurengas in der Klimaforschung. Da der Warmpool im Westpazifik die Hauptquellenregion für stratosphärische Luft ist, ist die Kenntnis von Ozon und anderen kurzlebigen Spurengasen auch wichtig, um den Transport von Spurengasen in die Stratosphäre zu verstehen.Ziel unseres Projektes ist die Messung des Tagesgangs von Ozon und anderen Spurengasen mit Hilfe der hochauflösenden solaren Absorptions-FTIR-Spektroskopie. Die Messungen liefern die Gesamtsäulendichten von bis zu 20 Spurengasen. Für einige Spurengase erlaubt die Analyse der Spektrallinienform die Ableitung der Konzentrationsprofile in bis zu etwa vier atmosphärischen Höhenschichten. Ergänzt werden die Beobachtungen durch Ozonballonsondierungen, kontinuierliche Messungen der UV-Strahlung, und Modellrechnungen mit einem Chemie-Transport-Modell. Die Messungen sind für den Zeitraum August bis Oktober 2022 geplant, die Auswertung und Interpretation von November 2022 bis Januar 2023.
Das Projekt "Wie prägen kohärente Luftströmungen den Einfluss des Golfstroms auf die großskalige atmosphärische Zirkulation der mittleren Breiten?" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung.Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
Das Projekt "Numerische Simulationen von Nebelereignissen in der Namib Region (NaFoLiCa-M)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Meteorologisches Institut.In der Trockenwüste Namib an der Westküste Afrikas sind Nebelereignisse von großer Bedeutung nicht nur für die Pflanzen- und Tierwelt, sondern insbesondere auch für die Gewinnung von Trinkwasser mit Hilfe von Nebelwasserkollektoren. Um eine ökonomische Nutzung der Trinkwassergewinnung zu ermöglichen, sind genaue Kenntnisse der raumzeitlichen Entwicklung von Nebelereignissen unerlässlich. Aufgrund der komplexen topographischen Strukturen in der Namib Region lassen sich diese Kenntnisse flächendeckend nur mit Hilfe numerischer Simulationen gewinnen. Im vorliegenden Projekt soll, basierend auf dem mesoskaligen Wettervorhersagemodell COSMO des Deutschen Wetterdienstes, das dreidimensionale Nebelmodell COSMO-FOG entwickelt werden, mit dem Nebelereignisse in der Namib Region simuliert werden können. In COSMO-FOG sollen insbesondere die speziellen topographischen Gegebenheiten im Untersuchungsgebiet (Atlantischer Ozean, Küstenwüste, Große Randstufe) berücksichtigt werden, um das Auftreten der dort vorkommenden unterschiedlichen Nebelereignisse (Advektionsnebel, Strahlungsnebel, Hochnebel, etc.) realistisch simulieren zu können. Das beantragte Projekt ist Teil eines Paketantrags bestehend aus drei Einzelprojekten, zu denen neben NaFoLiCa-M auch bodengebundene Messungen (NaFoLiCa-F) sowie auf Fernerkundung basierende Nebelbeobachtungen (NaFoLiCa-S) gehören. Verknüpfungen zwischen den Teilprojekten bestehen in der gemeinsamen Prozessanalyse durch Verbindung der bodengebundenen und satellitengestützten Messungen sowie im Einsatz von COSMO-FOG zur Ermittlung der raumzeitlichen Nebelstrukturen.
Das Projekt "Diffusion and advection with sorption of anions, cations and non-polar molecules in organo-clays at varying thermo-chemical conditions - validation by analytical methods and molecular simulation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Bodenkunde.The sorption of anions in geotechnical multibarrier systems of planned high level waste repositories (HLWR) and of non-ionic and organic pollutants in conventional waste disposals are in the center of recent research. In aquatic systems, persistent radionuclides such as 79Se, 99Tc, 129I exist in a form of anions. There is strongly increasing need to find materials with high sorption capacities for such pollutants. Specific requirements on barrier materials are long-term stability of adsorbent under various conditions such as T > 100 C, varying hydrostatic pressure, and the presence of competing ions. Organo-clays are capable to sorb high amounts of cations, anions and non-polar molecules simultaneously having selectivity for certain ions. This project is proposed to improve the understanding of sorption and desorption processes in organo-clays. Additionally, the modification of material properties under varying chemical and thermal conditions will be determined by performing diffusion and advection experiments. Changes by sorption and diffusion will be analyzed by determining surface charge and contact angles. Molecular simulations on models of organo-clays will be conducted in an accord with experiments with aim to understand and analyze experimental results. The computational part of the project will profit from the collaboration of German partner with the group in Vienna, which has a long standing experience in a modeling of clay minerals.
Origin | Count |
---|---|
Bund | 85 |
Land | 1 |
Wissenschaft | 11 |
Type | Count |
---|---|
Förderprogramm | 77 |
Text | 8 |
unbekannt | 12 |
License | Count |
---|---|
geschlossen | 9 |
offen | 77 |
unbekannt | 11 |
Language | Count |
---|---|
Deutsch | 59 |
Englisch | 51 |
Resource type | Count |
---|---|
Keine | 61 |
Webseite | 36 |
Topic | Count |
---|---|
Boden | 72 |
Lebewesen & Lebensräume | 73 |
Luft | 66 |
Mensch & Umwelt | 97 |
Wasser | 72 |
Weitere | 97 |