Über dem Nordatlantik und Europa wird die Variabilität der großräumigen Wetterbedingungen von quasistationären, langandauernden und immer wiederkehrenden Strömungsmustern â€Ì sogenannten Wetterregimen â€Ì geprägt. Diese zeichnen sich durch das Auftreten von Hoch- und Tiefdruckgebieten in bestimmten Regionen aus. Verlässliche Wettervorhersagen auf Zeitskalen von einigen Tagen bis zu einigen Monaten im Voraus hängen von einer korrekten Darstellung der Lebenszyklen dieser Strömungsregime in Computermodellen ab. Um das zu erreichen müssen insbesondere Prozesse, die günstige Bedingungen zur Intensivierung von Tiefdruckgebieten aufrecht erhalten, und Prozesse, die den Aufbau von stationären Hochdruckgebieten (blockierende Hochs) begünstigen, richtig wiedergegeben werden. Aktuelle Forschung deutet stark darauf hin, dass Atmosphäre-Ozean Wechselwirkungen, insbesondere entlang des Golfstroms, latente Wärmefreisetzung in Tiefs, und Kaltluftausbrüche aus der Arktis dabei eine entscheidende Rolle spielen. Dennoch mangelt es an grundlegendem Verständnis wie solche Luftmassentransformationen über dem Ozean die großskalige Höhenströmung beeinflussen. Darüber hinaus ist die Relevanz solcher Prozesse für Lebenszyklen von Wetterregimen unerforscht. In dieser anspruchsvollen drei-jährigen Kollaboration zwischen KIT und ETH Zürich streben wir an ein ganzheitliches Verständnis zu entwickeln, wie Wärmeaustausch zwischen Ozean und Atmosphäre und diabatische Prozesse in der Golfstromregion die Variabilität der großräumigen Strömung über dem Nordatlantik und Europa prägen. Zu diesem Zweck werden wir ausgefeilte Diagnostiken zur Charakterisierung von Luftmassen mit neuartigen Diagnostiken zur Bestimmung des atmosphärischen Energiehaushaltes verbinden und damit den Ablauf von Wetterregimen und Regimewechseln in aktuellen hochaufgelösten numerischen Modelldatensätzen und mit Hilfe von eigenen Sensitivitätsstudien untersuchen. Dazu werden wir unsere Expertise in größräumiger Dynamik und Wettersystemen, sowie Atmosphäre-Ozean Wechselwirkungen â€Ì insbesondere während arktischen Kaltluftausbrüchen â€Ì und der Lagrangeâ€Ìschen Untersuchung atmosphärischer Prozesse nutzen. Im Detail werden wir (i) ein dynamisches Verständnis entwickeln, wie Luftmassentransformationen entlang des Golfstroms die Höhenströmung über Europa beeinflussen, mit Fokus auf blockierenden Hochdruckgebieten, (ii) die Bedeutung von Luftmassentransformationen und diabatischer Prozesse für den Erhalt von Bedingungen, die die Intensivierung von Tiefdruckgebieten während bestimmter Wetterregimelebenszyklen bestimmen, untersuchen, (iii) diese Erkenntnisse in ein einheitliches und quantitatives Bild vereinen, welches die Prozesse, die den Einfluss des Golfstroms auf die großräumige Wettervariabilität prägen, zusammenfasst und (iv) die Güte dieser Prozesse in aktuellen numerischen Vorhersagesystemen bewerten. Diese Grundlagenforschung wird wichtige Erkenntnisse zur Verbesserung von Wettervorhersagemodellen liefern.
In der Trockenwüste Namib an der Westküste Afrikas sind Nebelereignisse von großer Bedeutung nicht nur für die Pflanzen- und Tierwelt, sondern insbesondere auch für die Gewinnung von Trinkwasser mit Hilfe von Nebelwasserkollektoren. Um eine ökonomische Nutzung der Trinkwassergewinnung zu ermöglichen, sind genaue Kenntnisse der raumzeitlichen Entwicklung von Nebelereignissen unerlässlich. Aufgrund der komplexen topographischen Strukturen in der Namib Region lassen sich diese Kenntnisse flächendeckend nur mit Hilfe numerischer Simulationen gewinnen. Im vorliegenden Projekt soll, basierend auf dem mesoskaligen Wettervorhersagemodell COSMO des Deutschen Wetterdienstes, das dreidimensionale Nebelmodell COSMO-FOG entwickelt werden, mit dem Nebelereignisse in der Namib Region simuliert werden können. In COSMO-FOG sollen insbesondere die speziellen topographischen Gegebenheiten im Untersuchungsgebiet (Atlantischer Ozean, Küstenwüste, Große Randstufe) berücksichtigt werden, um das Auftreten der dort vorkommenden unterschiedlichen Nebelereignisse (Advektionsnebel, Strahlungsnebel, Hochnebel, etc.) realistisch simulieren zu können. Das beantragte Projekt ist Teil eines Paketantrags bestehend aus drei Einzelprojekten, zu denen neben NaFoLiCa-M auch bodengebundene Messungen (NaFoLiCa-F) sowie auf Fernerkundung basierende Nebelbeobachtungen (NaFoLiCa-S) gehören. Verknüpfungen zwischen den Teilprojekten bestehen in der gemeinsamen Prozessanalyse durch Verbindung der bodengebundenen und satellitengestützten Messungen sowie im Einsatz von COSMO-FOG zur Ermittlung der raumzeitlichen Nebelstrukturen.
Urbane Emissionen von Kohlendioxid (CO2) und Methan (CH4) machen einen Großteil der Treibhausgasemissionen weltweit aus. Deshalb sind Städte auch Vorreiter bei der Entwicklung von Emissionsreduktionsmaßnahmen zur Mitigation des Klimawandels. Solche Maßnahmen müssen durch räumlich und zeitlich hochaufgelöste, vollständige, verlässliche und verifizierte Informationen begleitet und in Bezug auf ihre Effizienz überprüft werden. Unter den Beobachtungsmethoden für Treibhausgase gibt es allerdings eine Lücke im Bereich der horizontalen, flächendeckenden Kartierung auf der Skala einiger Kilometer. Dort braucht es eine Technik, die die Empfindlichkeitslücke zwischen lokalen in-situ Messungen und regional-integrierenden Säulenmessungen durch Fernerkundungsmessungen füllt.Hier schlage ich vor, urbane Treibhausgasquellen mit einer innovativen und portablen Technik zu studieren, die die CO2 und CH4 Konzentrationsfelder flächendeckend kartieren kann und so die Beobachtungslücke erfasst. Die erste Studienregion ist der Großraum Los Angeles, wo sich die CO2 und CH4 Emissionen auf mehr als 100 MtCO2/a und 300 ktCH4/a belaufen, was die Region zu einer der größten, lokalisierten Quellen weltweit macht. Los Angeles wurde in der Vergangenheit vielfältig in Bezug auf seine Treibhausgasquellen untersucht, indem beispielsweise Inventarisierungen durchgeführt und durch atmosphärische Messungen bewertet wurden. Ein herausragendes Experiment läuft gerade im Rahmen des CLARS-FTS (California Laboratory for Atmospheric Remote Sensing - Fourier Transform Spectrometer) – ein Spektrometer, das auf Mt. Wilson stationiert ist und reflektiertes Sonnenlicht aus dem Los Angeles Stadtgebiet einfängt. Wir haben eine portable Variante dieses Instruments entwickelt und schlagen nun vor beide Instrumente gemeinsam mit kalifornischen Partnern bei einer Feldkampagne zu betreiben.Dabei ist es unser Ziel das neue portable Observatorium zu validieren und für zukünftige Langfristvorhaben zu empfehlen. Dazu wollen wir innovative Beobachtungsmuster wie die Definition von Zoom-Regionen oder die Verwendung von gekreuzten Lichtwegen ausprobieren, um die räumliche und zeitliche Auflösung zu optimieren. Zudem werden wir die Genauigkeiten verbessern, indem wir einen neuen Ansatz der Strahlungstransportmodellierung implementieren, der simultan mit der Gasbestimmung auch die Streuung an atmosphärischen Partikeln berücksichtigt. Für die Fallstudie Los Angeles werden wir die Variabilität und die Gradienten der CO2 und CH4 Konzentrationen auf ihre Konsistenz mit den Emissionsinventaren überprüfen und untersuchen, bis zu welchem Grad sich die Einflüsse des meteorologischen Transports, der regionalen Advektion, episodischer Ereignisse und der urbanen Biosphäre unterscheiden lassen.
Derzeitige radar-basierte Nowcastingverfahren basieren auf der Annahme, dass die zeitliche Entwicklung von Hagelereignissen in erster Linie durch Advektionsvorgänge gesteuert ist; die relevanten physikalischen Prozesse, die für die Entstehung und das Größenwachstum von Hagel entscheidend sind, bleiben dabei unberücksichtigt. In Verbindung mit der komplexen internen Struktur und Dynamik von Hagelstürmen ergeben sich daraus große Unsicherheiten bei der Vorhersage der Hagelgrößenverteilung und der von Hagel betroffenen Fläche am Boden. Das Ziel des Projekts LIFT (Large Hail Formation and Trajectories) ist es, die Hagelentstehung und Hageltrajektorien besser zu verstehen, um daraus als wichtige Komponenten eines physikalisch-basierten Nowcastings erstmals ein radar-basiertes Verfahren für das Hagelwachstums zu entwickeln. Zu diesem Zweck wird im Rahmen von LIFT eine Messkampagne Süddeutschland durchgeführt, wo die größte Hagelwahrscheinlichkeit in Deutschland auf vielfältige Beobachtungssysteme trifft, die im Rahmen der Messkampagne Swabian MOSES mit einem dichten Netzwerk betrieben werden. Zum ersten Mal werden im Rahmen von LIFT moderne Radargeräte, In-situ Messgeräte, Fotogrammetrie und numerische Modellierung synergistisch kombiniert und ein umfassender Datensatz zur Rekonstruktion der zeitlichen Entwicklung des Hagelwachstums erstellt. Betroffene Bürger werden aktiv in die Messaktivitäten mit einbezogen und aufgerufen, Hagelkörnern einschließlich ihrer Haupteigenschaften in die WarnWetter App des DWD zu melden. Die Messkampagne mit ihrem mobilen und flexiblen Konzept beinhaltet die Anwendung neuer, innovativer Messtechniken, darunter Lagrangesche Trajektorien mittels kleiner Messsysteme, die in die Wolken eingebracht werden, und dronengesteuerte Luftbildaufnahmen zur Bestimmung der Hagelspektren. Aus Fernerkundungsdaten gewonnene Signaturen von Hagelereignissen liefern Informationen über die Charakteristika der Hagelereignisse und werden mittels numerischer Simulationen sorgfältig auf Messungenauigkeiten und Sensitivitäten bzgl. atmosphärischer Umgebungsvariablen evaluiert. Indikatoren für die Hagelentstehung und das Hagelwachstum werden aus Beobachtungsdaten und Simulationen identifiziert, und liefern die Grundlage für ein beobachtungs-basiertes Hagelwachstumsmodell. Schließlich wird dieses Multi-Parameter Hagelwachstumsmodell mit den bestimmten Hageltrajektorien und Schmelzprozessen kombiniert, um zu bestimmen, welche Prozesse am wichtigsten sind für das Nowcasting von Hagel. Das Projekt LIFT liefert damit einen wichtigen Betrag für zukünftige radar-basierte Hagelwarnsysteme mit einer verbesserten Vorhersagezeit und Vorhersagequalität.
Oberflächennahe sedimentäre Aquifere in Mitteleuropa sind wichtig für die Wasserversorgung und können enorme Mengen an thermischer Energie speichern und bereitstellen. Das Verständnis der grundlegenden Wärmetransportprozesse ist entscheidend für eine Kontrolle der thermischen Bedingungen in solchen Aquiferen, wie beispielsweise für die Quantifizierung von Strömungsregimen, die Abschätzung des Potenzials für die geothermische Nutzung und die gleichzeitige Erhaltung der Grundwasserqualität. Während die fundamentalen Wärmetransportmechanismen (d.h. Diffusion und Advektion) bekannt sind, bleibt die Interpretation ihrer kombinierten Effekte unter dem Einfluss größenabhängiger Heterogenitäten ungelöst. Sedimente sind typischerweise heterogen auf Skalen von klein (einzelne Körner) bis groß (Verteilung der hydraulischen Leitfähigkeit). In der Hydrogeologie wird zur Beschreibung des Wärmetransports traditionell ein volumengemittelter Ansatz verwendet, der ein lokales thermisches Gleichgewicht (engl. „local thermal equilibrium“, LTE) zwischen den Körnern und dem umgebenden Fluid annimmt. Dieser Ansatz ist jedoch weder verifiziert, noch sind Bedingungen für seine Gültigkeit festgelegt worden. Außerdem ignoriert dieser Ansatz die variablen Auswirkungen von verschiedenskaligen Heterogenitäten auf den Wärmetransport. Zu diesen Effekten gehören das lokale thermische Ungleichgewicht (engl. „local thermal non-equilibrium“, LTNE) und eine scheinbare Skalierung der makroskopischen thermischen Dispersion. Dieses Projekt zielt darauf ab, die Wärmetransportmechanismen auf Skalen vom Korn (Millimeter) bis zur geologischen Heterogenität (Dutzende von Metern) durch die Kombination von Labor- und Feldversuchen, so wie analytischen und numerischen Ansätzen in Einklang zu bringen. Auf der kleinen Skala werden gezielte Säulenexperimente durchgeführt, um den Einfluss realistischer Korngrößenverteilungen auf LTNE und thermische Dispersion zu untersuchen. Auf der großen Skala werden einzigartige Aquifer-Analoge in Wärmetransportmodellen getestet, um die Rolle der Sedimentstrukturen zu untersuchen. An einem Teststandort mit bekannter Untergrundheterogenität werden Feldexperimente das Auftreten von LTNE aufzeigen und die thermische Dispersion als Funktion der geologischen Skalenheterogenität quantifiziert. Sowohl Labor- als auch Feldexperimente werden zur Validierung der detaillierten numerischen Wärmetransportsimulationen verwendet. Diese werden anschließend eingesetzt, um weitergehende Aspekte, wie die Beziehung zwischen Korngrößenmischung und Wärmeübergangskoeffizient sowie den Einfluss der geologischen Heterogenität auf LTNE und thermische Dispersion zu klären. Schließlich werden die Ergebnisse gemeinsam interpretiert, um die Wärmetransportmechanismen auf den verschiedenen Skalen zu verstehen. Das Ergebnis wird einen neuartigen und universellen Rahmen für die Modellierung des Wärmetransports in Sedimenten mit natürlichen Heterogenitäten liefern.
Das Mischen von Flüssigkeiten ist in vielen Bereichen der Wissenschaft und Technik von größter Bedeutung. In porösen Medien sind Mischprozesse normalerweise ineffizient. Eine Verbesserung der Durchmischung kann potenziell durch eine Verbesserung der Schadstofffahnenverformung durch Dehnung und Faltung des Strömungsfeldes unter Verwendung von Injektions-Extraktions-Systemen oder in Systemen, die von Natur aus eine komplexe instationäre Dynamik aufweisen, wie z.B. die Wirkung von Gezeiten, erreicht werden. Frühere Studien wurden auf mehreren räumlichen Skalen (d.h. Poren-, Darcy-, Feld- und Regionalskala) durchgeführt, wobei hauptsächlich theoretische und Modellierungsansätze verwendet wurden. Experimentelle Studien hingegen, die unterkontrollierten Bedingungen durchgeführt wurden, sind nur spärlich vorhanden. Das vorgeschlagene Forschungsprojekt zielt darauf ab, die Auswirkungen der chaotischen Advektion auf den Transport gelöster Stoffe in gesättigten porösen Medien unter kontrollierten Laborbedingungen experimentell nachzuweisen. Die experimentellen Arbeiten werden von der Entwicklung neuer fortschrittlicher numerischer Methoden begleitet, die in der DUNE-Umgebung (Distributed Unified Numerics Environment) entwickelt werden, um eine genaue modellgestützte Interpretation der Ergebnisse zuermöglichen. Darüber hinaus werden auch multiparametrische Studien durchgeführt, um die realistischen Szenarien zu untersuchen, die den Rahmen von Laborexperimenten sprengen. Dieses Forschungsprojekt ist innovativ, da folgende Punkte untersuchtwerden: 1) Die Auswirkung der nichtlinearen Geschwindigkeitsabhängigkeit der Dispersion und des Nicht-Fick‘schen Transports im Allgemeinen auf die chaotische Advektion; 2) Die Auswirkung der unvollständigen Vermischung auf der Porenskala auf die effektive Vermischungsverstärkung durch chaotische Advektion; 3) Die Auswirkung der Verzögerungs- und Dichteeffekte, die den Transport von gelösten Stoffen chemisch-relevanter Spezies beeinflussen, auf die durch chaotische Advektion erzielte Vermischungsverstärkung; 4) Die Auswirkung der chaotischen Advektion auf reaktiven Transport. Darüber hinaus zielen wir darauf ab, die fehlende Verbindung zwischen den Metriken, die die chaotische Advektion und die Vermischung auf der Darcy-Skalabeschreiben, herzustellen. Dies kann durch eine modellgestützte Interpretation der in diesem Forschungsprojekt gesammelten experimentellen Ergebnisse erreicht werden.
Weltweit gefährden erhöhte Arsenkonzentrationen im Grundwasser die Gesundheit von mehr als 100 Millionen Menschen insbesondere in den dicht besiedelten Deltaregionen Süd- und Südostasiens. Aquifere mit hohem und niedrigem As-Gehalt sind durch unterschiedliche Redoxbedingungen gekennzeichnet und durch schmale Übergangszonen voneinander getrennt. Diese Fe dominierten Redoxfronten spielen hinsichtlich der Advektion und Retention von As eine entscheidende Rolle und schützen unbelastete Aquifere vor As Eintrag. Diese Schutzfunktion wird in Zukunft immer bedeutender, da die Grundwasserentnahme aufgrund des global zunehmenden Wasserbedarfs steigt und somit, durch erhöhte Advektionsraten, bisher nicht mit As belastete Grundwässer zusehends gefährdet. Trotz langjähriger Forschung bleibt ungeklärt, inwieweit und in welchem Ausmaß Fe dominierte Redoxfronten, insbesondere bei erhöhtem Grundwassertransport, der Kontamination von Grundwasser mit As entgegenwirken und verlangsamen können. Im Mittelpunkt unseres Projektes steht die Hypothese, dass die Langzeitstabilität und somit die Kontrollfunktion Fe dominierter Redoxfronten durch ein Zusammenspiel von (a) Transportprozessen, (b) mikrobieller Aktivität und (c) der Stabilität der Arsenträgerphasen (meist Fe Phasen) bestimmt wird. Wir nehmen an, dass sich sowohl Art und Menge an Fe Mineralen als auch die As Speziierung entlang des Redoxgradienten verändern und zwar in Abhängigkeit der verfügbaren Elektronendonatoren und -akzeptoren, der mikrobiellen Aktivität, der hydrogeochemischen Gradienten, sowie dem vorherrschenden Wassertransport. Weiter gehen wir davon aus, dass vertikale Austauschprozesse gelösten organischen Kohlenstoff aus den begrenzenden Aquitarden dem Aquifer zuführen, welches die Arsenmobilisierung weiter verstärkt. Übergeordnetes Ziel unseres Forschungsprojekts ist es, die Wissenslücken hinsichtlich der Arsenmobilität an Fe dominierten Redoxgrenzen durch einen bewusst integrativen und interdisziplinären Ansatz zu schließen, um die Gefährdung bisher nicht kontaminierter Grundwässer sachlich fundiert abschätzen zu können. Die fachübergreifenden Arbeiten sollen an einem Testfeld in Vietnam durchgeführt werden, welches durch viele gemeinsame Vorarbeiten sehr gut charakterisiert ist und sich als Modellstandort für unsere Fragestellungen bestens eignet. Alle erhaltenen Daten und Informationen werden in einem reaktiven Transportmodell zusammengeführt und so einheitlich interpretiert. Dieses Modell koppelt die grundlegenden biogeochemischen Prozesse mit den relevanten Transport- und Austauschmechanismen, so dass auch quantitative Vorhersagen über die zeitliche und räumliche Entwicklung der Redoxfronten bzw. der Arsenmobilität getroffen werden können. Ein vergleichbarer integrativer Ansatz, der von Beginn an und bewusst alle wesentlichen Fachrichtungen zur Beurteilung der As Dynamik einbezieht und gesicherte Prognosen erst ermöglicht wurde in dieser Form noch nicht unternommen.
Atmosphärische Modelle verwenden eine Schnittstelle zwischen dem Landoberflächenmodell und der Parametrisierung der Flüsse in der atmosphärischen Grenzschicht (ABL). Über eine Parameterisierung der Prandtlschicht (engl. surface layer scheme) werden Impuls-, Wärme- und Feuchtigkeitsflüsse zwischen der Oberfläche und der untersten atmosphärischen Modellschicht ausgetauscht. Bei diesem Ansatz wird eine „Blending Height“ eingeführt, bei der die Oberflächenflüsse über einer heterogenen Landoberfläche als homogen auf der Gitterskala betrachtet werden. In dieser Höhe, die innerhalb der untersten atmosphärischen Modellschicht angenommen wird, findet der Übergang zur ABL-Parametrisierung statt. Bei konvektionserlaubenden (CP) Modellsimulationen (Gitterskala < 3 km) über heterogener Vegetation können die unteren Modellschichten jedoch unterhalb der „Blending Height“ liegen, was zu Fehlern in den simulierten Flüssen führt. Eine große Herausforderung bei der atmosphärischen Modellierung ist die Parametrisierung der Schnittstelle zwischen heterogener dynamischer Vegetation und ABL unter instabilen, stabilen und neutralen Bedingungen mit Advektion aus verschiedenen Windrichtungen. Dementsprechend sind unsere Ziele die Identifizierung der „Blending Height“ in Abhängigkeit von der Heterogenität und dem Zustand der Vegetation sowie von den atmosphärischen Randbedingungen und die Quantifizierung des Einflusses der Vegetationsheterogenität auf die Energieflüsse in der „Blending Height“. Die Ergebnisse werden verwendet, um repräsentative, skalenabhängige Flüsse auf dieser Ebene für Land-Atmosphären (L-A) Rückkopplungsstudien und Turbulenzparametrisierungen abzuleiten. WRF-NoahMP-Gecros-Modellsimulationen von der CP- bis zur Large-Eddy-Skala werden mit Beobachtungen an den LAFO- und MOL-RAO-Standorten verglichen, um die „Blending Height“ und die effektiven Rauhigkeitsparameter der Vegetation für CP-Simulationen in Abhängigkeit von den atmosphärischen Rahmenbedingungen zu ermitteln. Die Simulationen werden über die Cross Cutting Working Group (CCWG)-MME in das Multi Model Experiment (MME) eingebettet. Die Auswirkungen der Heterogenität auf die Stärke der L-A-Rückkopplung werden untersucht und das Verständnis der Austauschprozesse zwischen Oberfläche und Atmosphäre sowie innerhalb der ABL verbessert. Die Synergie dieser Modellergebnisse und 3D-Beobachtungsdaten wird genutzt, um die skalenabhängigen Auswirkungen der dynamischen Vegetationsheterogenität auf die Energieflüsse in der „Blending Height“ zu untersuchen. Dieses Projekt befasst sich mit den LAFI-Hauptzielen 2, 3, 4, S und E. Es ist an der CCWG-MME und der CCWG-DL beteiligt. Die Simulationen werden in Zusammenarbeit mit den Projekten P6, P8 und P9 durchgeführt. P2 liefert den Blattflächenindex und den Anteil der Vegetationsdecke für die Initialisierung des Modells. Die LAFI-Beobachtungen von P1-P5 werden für die Modellevaluation verwendet.
The sorption of anions in geotechnical multibarrier systems of planned high level waste repositories (HLWR) and of non-ionic and organic pollutants in conventional waste disposals are in the center of recent research. In aquatic systems, persistent radionuclides such as 79Se, 99Tc, 129I exist in a form of anions. There is strongly increasing need to find materials with high sorption capacities for such pollutants. Specific requirements on barrier materials are long-term stability of adsorbent under various conditions such as T > 100 C, varying hydrostatic pressure, and the presence of competing ions. Organo-clays are capable to sorb high amounts of cations, anions and non-polar molecules simultaneously having selectivity for certain ions. This project is proposed to improve the understanding of sorption and desorption processes in organo-clays. Additionally, the modification of material properties under varying chemical and thermal conditions will be determined by performing diffusion and advection experiments. Changes by sorption and diffusion will be analyzed by determining surface charge and contact angles. Molecular simulations on models of organo-clays will be conducted in an accord with experiments with aim to understand and analyze experimental results. The computational part of the project will profit from the collaboration of German partner with the group in Vienna, which has a long standing experience in a modeling of clay minerals.
Origin | Count |
---|---|
Bund | 89 |
Land | 1 |
Wissenschaft | 11 |
Type | Count |
---|---|
Förderprogramm | 81 |
Text | 8 |
unbekannt | 12 |
License | Count |
---|---|
geschlossen | 9 |
offen | 81 |
unbekannt | 11 |
Language | Count |
---|---|
Deutsch | 63 |
Englisch | 55 |
Resource type | Count |
---|---|
Dokument | 9 |
Keine | 53 |
Webseite | 39 |
Topic | Count |
---|---|
Boden | 74 |
Lebewesen und Lebensräume | 73 |
Luft | 68 |
Mensch und Umwelt | 101 |
Wasser | 74 |
Weitere | 101 |