Das vorgeschlagene Projekt hat die Aufgabe, das Schwerpunktprogramm (SPP) 1530 'Flowering time control: from natural variation to crop improvement' zwischen 2014 und 2017 zu koordinieren. Dabei wird der Koordinator in enger Abstimmung mit dem Programmkomitee arbeiten. Darüber hinaus organisiert der Koordinator Themen/Technik-bezogene Treffen sowie Treffen junger Wissenschaftler. Dafür soll die Stelle der Projektmanagerin (PM) verlängert werden, um das vorhandene Portal zur Darstellung von Ergebnissen und Informationen des SPP aufrecht zu erhalten und zu pflegen sowie den Wissensaustauch zwischen den Gruppen zu unterstützen und das SPP in der Öffentlichkeit zu präsentieren. Dazu werden die in der ersten Phase eingerichteten web-basierten Inter- und Intranetforen weiter gepflegt. Der PM unterstützt den Koordinator bei der Organisation der Tagungen und speziellen Arbeitstreffen sowie bei der Organisation des internationalen Kongresses zum Ende der Laufzeit. Er hält Kontakt zu dem Wissenschaftlichen Beirat, dem Programmkomitee und den ausländischen (assoziierten) Partnern des SPP und ist für den Internetauftritt des SPP verantwortlich. Der PM unterstützt und koordiniert weiterhin die Aktivitäten der einzelnen Arbeitsgruppen und der integrativen Projekte. Dafür wird ein Budget für die Durchführung der Treffen, Reisemittel für SPP Mitglieder und assoziierte Partner zur Teilnahme an den jährlichen Treffen beantragt. Weiterhin werden SPP-Gruppen bei der Teilnahme an speziellen Arbeitstreffen unterstützt. Schließlich umfasst das Budget Mittel für die Unterstützung von jungen Wissenschaftlerinnen und Wissenschaftlern, damit sie ihre Projektarbeit und die Kinderbetreuung in Einklang bringen können.
Der überjährige Anbau von feinsamigen Leguminosen wie Luzerne und Rotklee ist eine der wichtigsten Säule im ökologischen Landbau in Bezug auf die Stickstoffversorgung und den Erhalt der Bodenfruchtbarkeit. Dies gilt sowohl für viehhaltenden als auch für viehlosen Betriebe. Bleibt der Anbau der Leguminosen oder -gemenge aus, lässt sich in Konsequenz häufig eine Abnahme in der Leistungsfähigkeit der Böden beobachten. Der Ansaatzeitpunkt, die Artenzusammensetzungen und der Umbruchtermin der Bestände sind dabei zentrale Stellschrauben für die erfolgreiche Etablierung der Bestände sowie für die potentiell positiven Auswirkungen für die nachfolgenden Kulturen. Ein Konsortium aus einem ökologisch und einem konventionell wirtschaftenden Betrieb sowie aus einer interdisziplinären Gruppe aus den Agrarwissenschaften haben sich daher zum Ziel gesetzt, die agronomische Optimierung und ökonomische Tragweite verschiedener Verfahren der Luzerneetablierung, der Bestandszusammensetzung incl. der möglichen Vorteile einer Integration von Spitzwegerich für den Futterwert und den betrieblichen Stickstoffhaushalt zu untersuchen. Neben der Bewertung der Futterqualität wird zusätzlich die Ermittlung von Ertrag und Bestandszusammensetzung mittels fernerkundlicher State-of the-Art Methoden für die praktische Umsetzungen auf betrieblicher Ebene erprobt.
Die Critical Zone (CZ) der Erde ist die dünne Zone, welche Atmosphäre und Geosphäre verbindet. Sie stellt nicht nur einen wichtigen Lebensraum dar, sondern ist auch verantwortlich für Ökosystemleistungen, wie die Bereitstellung von Trinkwasser. Umweltverschmutzung, Landnutzung und Klimawandel verändern zunehmend die Erdoberfläche, aber ihre Auswirkungen auf unterirdische Lebensräume, also den Teil der CZ, welcher unterhalb der Pflanzenwurzeln beginnt und sich bis in die Aquifere fortsetzt, sind noch nicht ausreichend erforscht. Das Ziel des SFB AquaDiva ist es, ein besseres Verständnis der Verbindungen zwischen oberirdischen und unterirdischen Lebensräumen zu gewinnen. Dazu haben wir eine Infrastrukturplattform etabliert, das Hainich Critical Zone Exploratory (CZE), um die Verbindung von Vegetation und Böden mit Aquiferkomplexen über Wasser- und Gasvermittelte Stoffflüsse unter verschiedenen Landnutzungsformen zu erforschen. Das Hainich CZE umfasst zwei Aquiferkomplexe in Kalk- und Mergelsteinen entlang eines 6 km langen Transektes im Einflussbereich von Wald, Weide- und ackerbaulicher Landnutzung. Unser Team kombiniert Techniken aus den Bereichen der Biologie, Chemie, Geowissenschaften und Informatik, um folgende Fragen zu beantworten: Welche Organismen leben dort, welche Funktionen üben sie aus, und worin liegt ihre Bedeutung für die CZ? In der ersten Phase wurden biotische und chemische 'Fingerabdrücke' detektiert, welche spezifisch für Eigenschaften oder Prozesse oberirdischer Lebensräume sind, um so Transport und Umwandlung solcher Marker bei der Passage hinunter zu den Aquiferen zu verfolgen. Extremereignissen zeigten dabei eine unerwartet starke räumliche Heterogenität hinsichtlich des Eintrags von Wasser und Stoffen in unterirdische Lebensräume. Hydrochemische Daten und Omics-basierte Untersuchungen ermöglichten die Identifikation distinkter biogeochemischer Zonen, welche Unterschiede in Geologie, Struktur, Stofftransport und Landnutzung der jeweiligen Infiltrationsbereiche widerspiegeln. In der zweiten Phase werden wir von der Charakterisierung von Unterschieden zur Erklärung ihrer Entstehung übergehen. Die Verbindung der Charakterisierung von Standortbedingungen mit biogeochemischen Flüssen wird uns ein vertieftes Verständnis der Ökologie unterirdischer Lebensräume und der Rolle der unterirdischen Biota für die Grundwasserqualität ermöglichen. Das Hainich CZE ist Teil eines internationalen Netzwerkes von Critical Zone Observatories und besitzt schon jetzt eine hohe Attraktivität für Kooperationspartner. Wir sind daher auf gutem Wege, uns zu einer international führenden Forschungsplattform auf dem Gebiet der Biodiversitätsforschung unterirdischer Lebensräume zu entwickeln.
Das Pflanzenhormon Gibberellin (GA) ist ein zentraler Regulator des pflanzlichen Wachstums und der pflanzlichen Entwicklung. Die Kontrolle der GA Biosynthese oder der GA Antwort wird in der Pflanzenzüchtung eingesetzt, vor allem zur Kontrolle der Pflanzenwuchshöhe. GA kontrolliert jedoch auch noch viele andere Aspekte des pflanzlichen Wachstums. Wie diese dem GA nachgeschaltet reguliert werden, ist noch unklar. Unser Projekt basiert auf den Ergebnissen einer vergleichenden Analyse des GA Transkriptoms. Wir möchten jetzt einen größeren Satz von GA Zielgenen untersuchen und charakterisieren, um ihre Rolle bei der Kontrolle individueller GA Antworten durch physiologische Experimente aufzudecken.
High altitude ecosystems are still widely perceived as natural and anthropogenic transformation is generally considered to be concentrated on lower elevations and late. However, recent studies challenge this view and for quaternary environmental science and prehistory, the question where humans retreated to during the driest intervals of the last 20 ka when lowlands may have become uninhabitable is still demanding. Based on previous own and third-party research and a total of four reconnaissances to the study area as part of the preparation of this research unit, we challenge the initially stated long-held belief. Given the higher humidity of the African mountains archipelago, the afro-alpine environments are a potential glacial refuge not only for plants and animals, but also for humans. Among others, this idea is backed up by the facts that - highland people of Ethiopia are genetically adapted to high altitude hypoxia which indicates their presence at least in parts of the higher areas over evolutionary time scales. - surface scatters of stone artefacts showing heavy abrasion have been found during the most recent reconnaissance trip between 3,700 and 4,100 m which for the first time likely indicates the presence of stone working people on the Sanetti Plateau. - the mosaic of isolated groves of Erica trimera across the plateau cannot be explained by climatic gradients but indicates a human induced and fire-based shaping of the afro-alpine heathlands. As a consequence, we postulate not a late but early afro-alpine occupation expressed as the 'Mountain Exile Hypothesis'. Hence, the research unit will focus on reconstructing the natural and the anthropogenic history of this afro-alpine environment in space and time and the identification and quantification of the natural and anthropogenic drivers and processes that shaped the ecology evolution of the research area. To tackle the research questions arising from the Mountain Exile Hypothesis and to test the hypothesis itself, a multi-disciplinary and multi-proxy approach which combines established as well as newly developed and complementing methods has been designed which focuses on both the - human side of environmental change (P1 - Archeology and Archeozoology, P2 - Anthrosols and Intensity of Human Occupation) and the - natural side of environmental change (P5 - Paleoclimatology, P6 - Glacial Chronology and P7 - Ground Beetles as a Human-Independent Paleoproxy). The respective investigations are bridged by paleoecological investigations (P4 - Paleoecology) which focus on pollen, spores and macrofossil analyses and discriminate the human and natural signals. To complete the scientific inventory required to address the overall objectives, relevant baseline environmental and ecological information is provided (P3 - Environmental Baseline Assessment) and all datasets are combined as part of a central scientific analysis and synthesis platform, the BalePaleoGIS (C2 - Central Scientific Services).
Ziel der Forschungsarbeit im Projekt ist die oekologisch angepasste Intensivierung der kleinbaeuerlichen Landwirtschaft Rwandas mit Hilfe der Methoden des Standortgerechten Landbaus ('Oekologischer Landbau', 'Agroforstwirtschaft'). Hierzu werden seit 1985 gemeinsam mit Kollegen von der Faculte d'Agronomie der Universite Nationale du Rwanda Langzeitversuche auf Modellfeldern in Butare/Rwanda durchgefuehrt. Derzeitige Forschungsschwerpunkte sind: - Vergleichende Untersuchungen zur Integration unterschiedlicher Agroforstbaumarten in die landwirtschaftlich genutzte Flaeche; - Optimierung der Umsetzung der von Baeumen und Hecken produzierten Biomasse; - Verbesserung des Erosionsschutzes mit biologischen Methoden (z.B. alley cropping mit Leguminosenhecken); - Feinanpassung des Systems an die Erfordernisse der Kleinbauern.
Der Kreislauf von Energie, Wasser und Kohlenstoff durch Boden, Vegetation und Atmosphäre beeinflusst die Verteilung und Qualität des Lebens auf der Erde. Mit dem rasanten Wachstum der Weltbevölkerung und ihrer Bedürfnisse wird die nachhaltige und effiziente Bewirtschaftung und Verteilung unserer natürlichen Ressourcen wichtiger denn je. Der Sonderforschungsbereich Transregio 32 fokussiert auf ein besseres Verständnis der Prozesse und Interdependenzen innerhalb und zwischen Boden, Vegetation und Atmosphäre. Dies ist unabdingbar für verlässlichere Wetter- und Klima-Modelle und genauere Vorhersagen für den Wasser- und CO2-Transport und ermöglicht dadurch eine bessere Bewirtschaftung der natürlichen Ressourcen. Räumliche und zeitliche Muster im Boden-Vegetation-Atmosphäre Kontinuum spielen hierbei eine zentrale Rolle. So beeinflusst zum Beispiel die landwirtschaftliche Nutzung - Weizen unmittelbar neben Rüben oder Kartoffeln neben Mais - den Austausch von Wasser, CO2 und Wärme zwischen Boden und Atmosphäre. Alle Prozesse sind untrennbar miteinander verflochten, wodurch komplexe Rückkopplungen und Reaktionen des Systems auf den verschiedenen räumlichen und zeitlichen Skalen entstehen.Das Ziel des TR32 ist es, die Herkunft von und die Wechselbeziehungen zwischen den räumlichen und zeitlichen Mustern der einzelnen Komponenten innerhalb des Boden-Vegetation-Atmosphäre-Systems mit Hilfe innovativer Monitoring- und Modellierungsansätze besser zu verstehen. Räumliche und zeitliche Strukturen von physikalischen Parametern (z. B. bodenhydraulische Leitfähigkeit), Zustandsgrößen (wie Bodenfeuchtigkeit oder Lufttemperatur) und Prozessen (z. B. Flüsse von CO2, Wasser und Wärme) können auf allen Skalen beobachtet werden. Die Erkennung dieser Muster und das Verstehen der vorhandenen Wechselwirkungen sind erforderlich, um die unterschiedlichen räumlichen und zeitlichen Skalen in numerischen Modellen darzustellen.
Die Temperatur ist ein wichtiger Umweltreiz für die Kontrolle des Blühzeitpunkts bei Pflanzen. In Arabidopsis bewirkt Kälte eine Verzögerung des Wachstums und der Blühinduktion und auf molekularer Ebene führt Kälte zur Akkumulation von DELLA Proteinen, zentralen Repressoren des Wachstums und der Blühinduktion aus dem Gibberellin (GA)-Signalweg. Die DELLA-Abundanz reagiert ziemlich rasch auf Veränderungen der Temperatur und die Effekte der DELLA-Akkumulation können durch GA (Behandlungen) wieder aufgehoben werden. Wir haben kürzlich gezeigt, dass der Arabidopsis MADS-Box Transkriptionsfaktor APETALA1 (AP1) durch direkte Interaktionen mit DELLA Proteinen reprimiert wird. Des Weiteren haben wir Hinweise darauf, dass erhöhte Mengen an AP1 Expression auf molekularer Ebene für die frühe Blüte zweier Arabidopsis-Accessionen in kalten Temperaturen sind. Wir möchten nun die Hypothese testen, dass die erhöhten Mengen an AP1 die inhibitorischen Effekte der DELLA Repressoren in kalten Temperaturen aufheben. Zweitens möchten wir testen, ob das AP1-DELLA regulatorische Modul auch in Getreiden konserviert ist. Bei der Gerste und im Weizen sind die VERNALIZATION1 (VRN1) Proteine, die nächsten Orthologen von Arabidopsis AP1, zentrale Regulatoren der Blühinduktion. Wir möchten daher testen, ob VRN1 aus der Gerste und dem Weizen auch mit den DELLA Proteinen aus diesen beiden Species interagieren können und ob die Kontrolle des Blühzeitpunkts in Antwort auf Temperatur und GA von dieser Interaktion abhängig ist.
Mit diesem Schwerpunktprogramm will das Konsortium die ökosystemare Dimension der Pflanzenernährung untersuchen und der Frage nachgehen, was das viel benutzte Zitat 'Das Ganze ist mehr als die Summe der Einzelteile' für die Versorgung von Waldökosystemen mit Phosphor (P) ganz konkret bedeutet. Die Frage der P-Versorgung soll aus dem Blickwinkel 'Ökosystemernährung' betrachtet werden, dafür sollen neue Konzepte und innovative Methoden entwickelt werden. Es wird untersucht, ob es Anpassungsmechanismen an Standorten mit schlechter P-Versorgung gibt, die nicht auf der Anpassung der einzelnen Individuen beruhen, sondern auf sehr gut abgestimmter Zirkulation von P im System. Die Hypothese, die überprüft wird, ist, dass Lebensgemeinschaften auf P-armen Standorten durch hohe Recycling-Effizienz gekennzeichnet sind. Zentraler Bestandteil der wissenschaftlichen Untersuchung sind fünf Dauerbeobachtungsflächen forstlicher Landesanstalten in Baden-Württemberg, Bayern, Niedersachsen und Thüringen. Auf diesen Flächen werden P-Flüsse, die P-Versorgung der Bestände und das P-Recycling sowie die Steuergrößen der Recycling-Effizienz ermittelt und im Kontext der auf den Flächen seit Langem durchgeführten Erhebungen diskutiert. Dabei ist es für das Schwerpunktprogramm von großem Vorteil, auf diese Langzeituntersuchungen zurückgreifen zu können. Derartige Daten könnten im Rahmen eines zeitlich befristeten Verbundprojekts nicht erarbeitet werden, sind für die Interpretation der erzielten Ergebnisse aber essenziell. Von großer Bedeutung für die Bearbeitung der Fragestellung ist außerdem die enge Zusammenarbeit zwischen Vertreterinnen und Vertretern aus bodenwissenschaftlichen, pflanzenwissenschaftlichen, forstwissenschaftlichen und geowissenschaftlichen und umweltwissenschaftlichen Fachdisziplinen. In einem weiteren Schritt soll untersucht werden, wie menschliche Eingriffe (Baumartenwahl, Nutzungsintensität, Kalkung, Stoffeinträge, Klimawandel) die postulierten ökosystemaren Anpassungsstrategien beeinflussen. Außerdem stellen wir uns auch der Frage, ob wir von naturnahen Systemen auch etwas lernen können für effizientes P-Recycling in anthropogenen Systemen.
Fließgewässerbegleitende Feuchtgebiete sind wichtige Quellen für gelösten organischen Kohlenstoff (DOC) im Gebietsabfluss. Während der letzten Jahrzehnte stiegen in vielen nördlichen Einzugsgebieten die DOC Konzentrationen im Abfluss, mit Folgen für die Gewässergüte und Kohlenstoffspeicherung in den Gebieten. Mögliche Ursachen der DOC Trends werden derzeit intensiv diskutiert. In Böden ist organischer Kohlenstoff (C) häufig mit Oxiden/Hydroxiden des Eisens (Fe) assoziiert, was C unter oxischen Bedingungen immobilisiert. Unter anoxischen Bedingungen kann C durch reduktive Auflösung der Fe-Phasen und/oder eine redoxbedingte Erhöhung des pH remobilisiert werden. Diese Vorgänge wurden zwar im Labor - vor allem für Mineralböden - untersucht, jedoch ist die Bedeutung für organisch geprägte Böden sowie die DOC-Dynamik im Gebietsabfluss noch weitestgehend unklar. Wir führen dies auf mangelnde Untersuchungen zurück, welche diese Prozesse in Einzugsgebieten von der DOC-Quelle bis ins Gewässernetz mit geeigneten experimentellen und Modelltechniken verfolgen. Ziel des Projektes ist daher ein Prozessverständnis der Interaktionen von DOC, Fe und pH für Einzugsgebiete zu entwickeln, die durch einen wesentlichen Anteil gewässerbegleitender Feuchtgebiete geprägt sind. Die zentrale Hypothese ist, dass der mobilisierbare DOC-Pool in gewässerbegleitenden organischen Böden hauptsächlich durch Redoxprozesse beeinflusst wird, insbesondere durch Fe-Reduktion sowie durch redoxbedingte Änderungen des pH. Wir postulieren einen Zusammenhang der DOC-Dynamik im Gebietsabfluss und der Änderung der Grundwasserstände/Bodentemperaturen in den Feuchtgebieten, weil letztere die Redoxbedingungen maßgeblich beeinflussen. Im Projekt wird ein kombinierter Ansatz verfolgt, mit (A) experimentellen Untersuchungen entlang von Transekten aus den Feuchtgebieten bis ins Gewässer, wobei molekulare DOC Signaturen als Tracer für Mobilisierungsprozesse verwendet werden und (B) der Anwendung von neueren Methoden zur Detektion kausaler Wechselwirkungen aus Monitoringdaten. Das Projekt ist vorwiegend im Krycklan Einzugsgebiet in Nordschweden geplant, für das lange Zeitreihen sowie eine sehr gute Infrastruktur existieren. Das Prozesswissen aus Krycklan soll mit Hilfe von Bayes'schen Netzen auf deutsche Einzugsgebiete übertragen werden, wo komplementäre Studien durchgeführt werden und Kooperationen bestehen. Das 3-jährige Forschungsprojekt soll mit einem Doktorand*innen in einer Kooperation der Uni Münster, der Berliner Hochschule für Technik (BHT), des UFZ Leipzig/Magdeburg, der Schwedischen Uni für Agrarwissenschaften in Umeå und der Uni Bayreuth durchgeführt werden. Während die/er Doktorand*in für die experimentellen und die Laboruntersuchungen zuständig ist, obliegen PI Selle (BHT) die Modellierungsarbeiten und die Übertragung der Erkenntnisse aus Schweden auf deutsche Einzugsgebiete; gemeinsam wird schließlich eine Integration und Synthese von Projektergebnissen erreicht.
Origin | Count |
---|---|
Bund | 325 |
Land | 47 |
Type | Count |
---|---|
Förderprogramm | 314 |
Text | 24 |
unbekannt | 33 |
License | Count |
---|---|
geschlossen | 46 |
offen | 323 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 325 |
Englisch | 109 |
Resource type | Count |
---|---|
Dokument | 31 |
Keine | 203 |
Unbekannt | 2 |
Webseite | 137 |
Topic | Count |
---|---|
Boden | 294 |
Lebewesen und Lebensräume | 353 |
Luft | 205 |
Mensch und Umwelt | 371 |
Wasser | 171 |
Weitere | 366 |