API src

Found 657 results.

Related terms

Analyse des Potentials mechanischer Unkrautbekaempfung

Die Arbeiten aus dem vorhergehenden Zeitraum wurden fortgefuehrt. Wiederum erwies sich die Rollhacke mit zusaetzlichen Hackscharen wegen ihrer geringen Verstopfungsneigung und hohen Flaechenleistung auch fuer Rueben als gut geeignet. Der Vorauflaufeinsatz von Striegeln brachte gute Ergebnisse. Der Einsatz einer modifizierten Hacke brachte selbst bei Getreide (12 cm Reihenabstand) in Marokko so gute Erfolge, dass mechanische Verfahren auch kostenmaessig gut mit chemischen Verfahren konkurrieren koennen. Die Technikwirkungsanalyse einer in Entwicklung befindlichen selektiven, sensorgesteuerten Reihenhackmaschine erwies sich beim Maiseinsatz pflanzenbaulich-oekonomisch der Feldspritze ebenbuertig, oekologische jedoch deutlich ueberlegen.

Einsatz von phototrophen Biofilmen im Agrarsektor zur Verbesserung des Pflanzenwachstums

Im Jahr 2018 wurden in Deutschland rund 866 Millionen Tonnen Treibhausgase produziert, wobei weltweit 10-12 % der anthropogenen Treibhausemissionen der Landwirtschaft zuzuordnen sind. Während der Austausch an CO2 durch die gleichzeitige CO2 Fixierung in organische Masse fast ausgeglichen ist, beträgt der Anteil der Landwirtschaft bei Methan 50 % und Lachgas sogar 60 % aller Emissionen. Dies ist vor allem auf den Einsatz mineralischer und organischer Düngemittel zurückzuführen. Ohne ein aktives Gegensteuern wird eine Steigerung der Lachgasemissionen um 30-65 % bis 2030 in der Agrarwirtschaft erwartet. Um das gesetzte klimapolitische Ziel einer weitgehenden Treibhausgas-Neutralität bis 2050 zu erreichen, stellt ein klimaschonender Anbau von nachwachsenden Rohstoffen in der Landwirtschaft eine wichtige Strategie dar. Ein zentraler Teilaspekt dieser Strategie könnte die Ansiedlung der gegenüber biotischen und abiotischen Bedingungen toleranten terrestrischen Cyanobakterien sein, die in der Lage sind Luftstickstoff zu fixieren und in - für andere Organismen verwertbaren - Stickstoff umzuwandeln und an die Umgebung abzugeben. Zusätzlich dazu wachsen terrestrische Cyanobakterien eingebettet in einer Matrix aus extrazellulären polymeren Substanzen was zu einer wünschenswerten Bodenstabilisierung und damit zum Schutz vor Bodenerosion sowie zur Förderung der Wasserspeicherung im Boden beitragen könnte. Hierzu sollen stickstofffixierende Cyanobakterien, die aus der kühlgemäßigten Klimazone isoliert wurden, eingesetzt werden. Geeignete Stämme müssen die Stickstofffixierung räumlich durch die Ausbildung von Heterozysten vom Photosyntheseapparat getrennt haben und den bioverfügbaren Stickstoff an die Umgebung abgeben. Co-Kultivierungen von Cyanobakterien mit Arabidopsis thaliana (Acker-Schmalwand) sowie Triticum aestivum (Weizen) sollen zeigen, ob eine künstlich induzierte Symbiose möglich ist. Neben der Agrarpflanze Weizen wurde A. thaliana ausgewählt, da es sich hierbei um eine schnellwachsende und gut charakterisierte Modellpflanze handelt und sie zur selben Familie wie die Nutzpflanzen Kohl, Brokkoli und Meerrettich zählt. Zur Ausbringung der Biofilme in die Agrarwirtschaft sollen diese auf einem biologisch abbaubaren Trägermaterial immobilisiert werden. Hierfür soll ein Aerosolreaktor konzipiert und charakterisiert sowie ein Animpf- und Ernteverfahren etabliert werden. Zusätzlich dazu soll der Wasserrückhalt der Biofilme durch Variation der Prozessparameter optimiert werden. Abschließend soll die Co-Kultivierung von immobilisierten Cyanobakterien auf dem Trägermaterial und Pflanzen in Pflanzsubstraten in Abhängigkeit der Temperatur untersucht werden. Hier soll die Frage beantwortet werden, ob ein periodisches Ausbringen der Cyanobakterien notwendig ist, oder ob eine dauerhafte Implementierung von Biofilmen im Boden möglich ist.

Erarbeitung von Algorithmen für umwelt-, ertrags- und qualitätsrelevante Parameter einer teilflächenspezifischen Landbewirtschaftung

In einem Forschungsverbund wird an der teilflächenspezifischen Umsetzung von agrotechnischen Maßnahmen gearbeitet. Schwerpunkt ist die Zusammenführung und Richtung unterschiedlicher Informationen (Bodennutzungssysteme, Ertragskartierung, Erfahrungswerte) mit dem Ziel, Applikationstechnik teilflächenspezifisch steuern zu können.

Transregio TRR 228: Zukunft im ländlichen Afrika: Zukunft-Machen und sozial-ökologische Transformation; Future Rural Africa: Future-making and social-ecological transformation, Teilprojekt A01: Synergien und Zielkonflikte von Kohlenstoffspeicherung entlang von Entwicklungspfaden der Landveränderungen

Das Projekt beschäftigt sich mit Fragen zur Rolle zeitlicher Skalen für die Kohlenstoff-Speicherung in Böden und Vegetation unter alternativen Landnutzungsformen, zu Determinanten systemischer Kopplungsmechanismen zwischen Landnutzungsentscheidungen, C-Speicherung und anderen Ökosystemdienstleistungen, und zur Wirkung biophysischer und sozioökonomischer Faktoren auf die (Kosten-) Effektivität bestehender und geplanter Naturschutz-, Renaturierungs-, und Intensivierungsmaßnamen. Dafür werden Boden- und Vegetationsanalysen mit Haushaltsbefragungen und Fernerkundung kombiniert.

Wie die räumlich-zeitliche Umwandlung von superabsorbierenden Polymeren (SAPs) Bodenprozesse verändert

In dem vorliegenden Projekt soll untersucht werden, wie und in welchem Ausmaß landwirtschaftlich genutzte Bodenverbesserungsmittel in Form von superabsorbierenden Polymeren (SAPs) in plastikähnliche, feste Rückstände (SAP-SR) umgewandelt werden können und dabei grundlegende, physikochemische Bodeneigenschaften modulieren. Da die primären Anwendungsziele von SAPs in erster Linie der Optimierung des Wasserhaltevermögens, der hydraulischen Leitfähigkeit sowie der mechanischen Bodenstabilität dienen, wollen wir untersuchen und verstehen, wie die Alterung bzw. potenzielle Umwandlung von SAPs in SAP-SR diese Eigenschaften und Prozesse nachhaltig verändern. Somit ließe sich nachvollziehen und klären, ob der ursprüngliche Zweck von SAPs und ihre typischerweise angeführten Vorteile trotz ihrer Alterung oder Umwandlung weiterhin erhalten bleiben, dauerhaft reduziert oder sogar ins Negative umgekehrt werden. Zur Beantwortung dieser Fragen werden gezielte Experimente zum Abbau- und Umwandlungspotenzial verschiedener, gängiger synthetischer SAPs unter verschiedenen Inkubationsbedingungen und in unterschiedlichen Böden durchgeführt. Gleichzeitig werden die damit einhergehenden Änderungen grundlegender physikochemischer Bodeneigenschaften erfasst und mit relevanten Abbau- und Umwandlungsprozessen der SAPs verknüpft. Das notwendige Wissen und die geeigneten Techniken werden aus früheren und derzeit laufenden Projekten gewonnen, die sich mit dem Beitrag von synthetischen und Biopolymeren auf die Bodeneigenschaften und -funktionen beschäftigen. Im Rahmen des Projekts werden wir bereits etablierte Methoden wie ein- (1D-), zwei- (2D-) dimensionale und Feldgradienten- (PFG-) 1H NMR-Relaxometrie, Rheometrie, Dynamische Differenzkalorimetrie (DSC), Pyrolyse-GC-MS (Pyr-GC-MS) und verschiedene bildgebende Verfahren (Elektronenmikroskopie (ESEM) und Röntgen-Mikrotomographie (µCT)) anwenden. Sobald geklärt wurde, wie und unter welchen Bedingungen SAP-SR-Strukturen gebildet und welche ihrer ursprünglichen physikochemischen Eigenschaften grundlegend geändert werden, sollen die damit einhergenden Auswirkungen auf das Pflanzenwachstum und die Rhizosphären-Dynamik in kontrollierten Gewächshausexperimenten qualitativ und quantitativ erfasst werden. Die Ergebnisse des Projekts werden somit Aussagen über das langfristige Verhalten, den Verbleib und die Wirksamkeit von SAPs auf der Grundlage veränderter Bodenprozesse und bodenphysikochemischer Eigenschaften ermöglichen.

Bodengefügeschutz

Das Bodengefüge von Acker- und Grünlandflächen muss im Sinne des Erhalts der natürlichen Bodenfunktionen vor schädlichen Verdichtungen geschützt werden. Aus diesem Grund ist es erforderlich, gefügeschonende Bewirtschaftungsverfahren zu entwickeln und zur Anwendung zu bringen. Das LfULG führt zu diesem Zweck verschiedene Forschungsvorhaben durch. Gleichzeitig wurde für Landwirtschafts-betriebe ein computergestütztes Werkzeug zur Einschätzung der Einwirkungen von landwirtschaftlicher Technik auf das Bodengefüge im Sinne des vorsorgenden Bodenschutzes entwickelt.

Untersuchung autonomer, datengesteuerter Technologien in der Pflanzenproduktion - ein emergentes Innovations-Ökosystem transformiert den Agrarsektor

Die Präzisionslandwirtschaft und die damit verbundenen digitalen Technologien bergen viele Potenziale für eine nachhaltige Transformation des Agrarsektors und bilden die Grundlage für ressourcenschonende Produktivitätssteigerungen im Sinne der „sustainable intensification.“ Digitale Technologien aus anderen Sektoren finden somit zunehmend Anwendung in der Pflanzenproduktion. In der Konsequenz lässt sich ein Zusammenwachsen, d. h. eine Konvergenz, zwischen der digitalen Ökonomie und dem Agrarsektor beobachten. Diese Konvergenz führt zu einer Transformation hin zu einer Präzisionslandwirtschaft, die als komplexes Phänomen mit zahlreichen Wechselwirkungen zu beschreiben ist. Um dieser Komplexität gerecht zu werden, ist ein holistischer Ansatz zur Erfassung der Zusammenhänge erforderlich. Das Ziel dieses Forschungsprojektes ist daher die Untersuchung der grundlegenden strukturellen Veränderungen, die durch das Aufkommen autonomer, datengesteuerter Technologien ausgelöst werden, sowie der Folgen und Chancen für die beteiligten Akteure. Dies erfolgt im Rahmen einer Mehrebenenanalyse auf Ökosystem, Organisations- und Individualebene. Die vorliegende Untersuchung wird die Konvergenz ehemals getrennter Ökosysteme (WP1), die Auswirkungen auf die Identität von etablierten Unternehmen im Bereich der Landmaschinentechnik (WP2) sowie die kognitiven Mechanismen von Managern bei der Erkennung unternehmerischer Chancen in dem Konvergenzfeld Präzisionslandwirtschaft (WP3) analysieren. Die hier angestrebte Mehrebenenanalyse wird das Verständnis der Transformation von Agrarproduktionssystemen vertiefen, die zunehmend von physischen Produkten zu digitalen Produkt-Service-Systemen übergehen. Die Integration der Ergebnisse aller drei Untersuchungsebenen dient der Erweiterung der Forschung zu Ökosystemen und Konvergenz sowie der Beantwortung der entscheidenden Frage, welche Akteure in dem sich wandelnden und zunehmend komplexen Ökosystem der Landwirtschaft eine dominante oder einflussreiche Rolle einnehmen werden.

Nichtinvasive Detektion von Mikroplastikpartikeln im Boden - Analyse der Auswirkungen von Mikroplastik auf Bodenaggregate, Wurzeln und Infiltrationsverhalten

Weltweit werden Böden zunehmend mit Plastikmüll belastet. Der kontinuierliche Eintrag von Mikroplastik beeinflusst Lebensbedingungen von Pflanzen und Bodenorganismen. Bislang verstehen wir nur unzureichend, wie sich die Anwesenheit von Mikroplastik auf Struktur und Funktionsweise des Bodens auswirkt. Es ist unklar, wie stark die Rhizosphäre dadurch beeinflusst wird und welche Risiken sich daraus für die Pflanzen ergeben. Inzwischen gibt es verschiedene Analyseverfahren, um unterschiedliche Aspekte der Mikroplastikverschmutzung des Bodens zu untersuchen. Allerdings beinhalten diese Verfahren üblicherweise Prozessschritte, bei denen die Integrität der Probe zerstört wird, wodurch sich der Zusammenhang zwischen der Verteilung von Mikroplastik in der Probe und der Mikrostruktur und Hydraulik des Bodens nicht mehr erschließen lässt. Vor kurzem haben wir jedoch einen nicht-invasiven Ansatz entwickelt, mit dem Mikroplastik in sandigen Böden nachgewiesen werden kann. Mittels komplementärer Neutronen- und Röntgentomographie lassen sich Mikroplastikpartikeln im trockenen Boden detektieren und gleichzeitig die dreidimensionale Struktur der Bodenmatrix analysieren. In diesem Projekt wird die Methode getestet, optimiert und dann angewandt, um besser zu verstehen, wie Mikroplastik unterschiedlicher Größe und Form die Mikrostruktur und Eigenschaften des Bodens beeinflusst. Außerdem wird untersucht, ob in die Rhizosphäre eingelagertes Mikroplastik die Bedingungen für das Wurzelwachstum und die Wasseraufnahme verändert und welchen Einfluss Mikroplastik unterschiedlicher Größe und Form auf die Infiltration und Wasserbewegung im Boden hat. Zunächst wird die Auflösung der Methode optimiert, um auch sehr feine Strukturen, wie Mikroplastikfasern und Folienfragmente, detektieren zu können. Die Segmentierung der 3D Bilddaten wird durch die Berücksichtigung von Form-Deskriptoren sowie durch Maschinelles Lernen unterstützt, um Mikroplastikpartikeln von organischen Bodenbestandteilen zu unterscheiden. In einem Aggregationsexperiment mit wird für einen natürlichen Sandboden der Einfluss von Mikroplastikfasern auf die Bildung und Stabilität von Bodenaggregaten mittels hochauflösender Dual-mode Tomographie analysiert. Im nächsten Schritt wird die Rhizosphäre junger Mais- und Lupinenpflanzen untersucht, um potentielle Einflüsse verschieden geformter Mikroplastikpartikel auf lokale Strukturen der Bodenmatrix, Wurzeln und Wasserpfade zu ermitteln. Schließlich werden wir High-Speed Neutronentomographie einsetzen, um dynamischen 3D-Infiltrationsmuster in Bodensäulen mit und ohne Wurzelsysteme zu erfassen. Die Form und Geschwindigkeit der Wasserfront wird zeigen, ob und wie die Bodenbenetzbarkeit durch eingelagerte Mikroplastikpartikel beeinflusst wird. Das vorgeschlagene Projekt wird einzigartige neue Einblicke in die durch Mikroplastik modifizierte Struktur der Bodenmatrix geben, die für das mechanistische Verständnis der resultierenden Bodeneigenschaften gebraucht werden.

Verbesserung von großflächigen mechanistischen Ertragssimulationen durch Entflechtung von Genotyp × Umwelt × Managementfaktoren

Eine zuverlässige Vorhersage von landwirtschaftlichen Erträgen ist für Landwirte, Behörden und Entscheidungsträger in einer Vielzahl von thematischen Institutionen von großem Interesse. Mechanistische Simulationsmodelle wurden entwickelt, um das komplexe System der Wechselwirkung zwischen Pflanzen, Boden und Atmosphäre zu beschreiben, das auch die Entwicklung von Ernteerträgen umfasst. Theoretisch sollten solche Modelle in der Lage sein, den Ertrag jeder einzelnen Kulturpflanze in jedem Winkel der Welt zu simulieren, da die zugrunde liegende Physik überall auf diesem Planeten gilt. Modellvergleichsstudien haben jedoch gezeigt, dass keines der vielen Modelle dieser Erwartung gerecht wird. Zwei Hauptgründe werden für diese Beobachtung verantwortlich gemacht: (i) die Beschreibung der Prozesse, die für das Verhalten des Systems in den Modellen verantwortlich sind, ist unvollständig oder fehlerhaft, und (ii) die Informationen, die die Modelle verwenden, um zu einer Vorhersage zu gelangen, sind unzureichend oder nicht genau genug. Die Zahl der Anwendungen von Simulationsmodellen in einem Raster-Design für Ertragsvorhersagen über große zusammenhängende Gebiete nimmt zu, aber eine angemessene Validierung fehlt derzeit. Bei der Kalibrierung zur bestmöglichen Reproduktion dieser beobachteten Ertragsmuster bleibt unklar, ob die zugrunde liegenden Prozesse und ihre repräsentativen Zustandsvariablen ebenso gut simuliert werden. Die Tatsache, dass für die überwiegende Mehrheit der landwirtschaftlichen Felder in Deutschland keine Informationen über Sorten, Düngepläne und feinräumige Bodeninformationen verfügbar sind, schränkt das Potenzial der Verwendung von Simulationsmodellen für Ertragsvorhersagen ein. In diesem Projekt wird vorgeschlagen, Simulationsmodelle zur inversen Schätzung einiger der Eingangsparameter und treibenden Variablen zu verwenden, indem beobachtete Ernteerträge auf einer feinen Skala und zusätzliche Informationen verwendet werden, die die inverse Parameterschätzung einschränken. Unter Verwendung eines mehrjährigen und multilokalen Datensatzes von Winterweizenerträgen für 100 Kacheln mit einer Größe von 10 × 10 m², die von Multisensor-Satellitenbildern auf einer Skala von 10 m begleitet werden, schlägt dieses Projekt vor, (i) die derzeitigen Grenzen von AEMs für die genaue Reproduktion von beobachteten Winterweizenerträgen in Deutschland zu untersuchen, (ii) die interne Validität von drei AEMs bei der Reproduktion dieser Erträge zu verbessern und (iii) Prioritäten für die weitere Forschung zur Verbesserung zukünftiger Ertragsvorhersagen unter Verwendung von AEM zu identifizieren. Die übergreifende Hypothese ist, dass die Genauigkeit aktueller mechanistischer Agrarökosystemmodelle bei der blinden Simulation von Winterweizenerträgen über den Boden-Klima-Raum in Deutschland hauptsächlich durch unzureichende Informationen über Genotyp × Umwelt × Bewirtschaftung und nicht durch die Modellstruktur begrenzt ist.

Eine holistische Beurteilung der Akkumulation und Translokation von Eisen, Zink und Selen von der Wurzel über den Spross zum Korn in Mais bei Wassermangel

Eisen (Fe), Zink (Zn) und Selen (Se) sind wichtige Mineralstoffe für den Menschen. Weltweit leiden über 1,2 Milliarden Menschen an Fe, Zn und/oder Se Unterversorgung. Mais (Zea mays L.) ist global betrachtet die meistproduzierte Getreideart. Menschen, deren Hauptnahrungsquelle Mais darstellt, gehören zu denjenigen, die am stärksten von einem dieser Mineralstoffmängel bedroht sind. Zugleich wird prognostiziert, dass die durch den Klimawandel verursachte Zunahme an Trockenheitsperioden zu einem Rückgang der Erträge sowie der Mikronährstoffgehalte in Maispflanzen führen wird. Die Züchtung von Maissorten mit einer stabileren Aufnahme von Fe, Zn und Se aus dem Boden und einer effizienten Translokation dieser Nährstoffe in essbares Gewebe bei Wasserknappheit stellt eine vielversprechende Strategie dar, die humane Mais-basierte Mikronährstoffversorgung zu sichern oder sogar zu steigern. Entsprechend ist das Hauptziel dieses Projektes physiologische, molekulare und genetische Faktoren zu identifizieren und zu verstehen, die die Fe-, Zn- und Se-Akkumulation unter Wassermangel steuern und folglich zur Züchtung von Mais mit höherem Mikronährstoffgehalten beitragen. Die synergistischen Arbeitspakete kombinieren modernste Multi-Omics-Techniken aus den Bereichen Ionomik, Genomik und Transkriptomik mit high-end Röntgen-gestützter räumlicher Elementverteilungskartierung, um die räumlich-zeitliche Dynamik der Nährstoffaufnahme und -translokation in ausgewählten, agronomisch relevanten, natürlichen Maislinien sowie in Maislinien, welche in Merkmalen, die die Nährstofflogistik potentiell beeinflussen, mutiert sind, zu verstehen. Ein Fokus liegt insbesondere auf der Rolle der exo- und endodermalen Barrieren, deren Bedeutung für die Mikronährstoffaufnahme in Mais noch nicht erforscht ist. Ein weiteres Ziel ist die Charakterisierung der raumzeitlichen Expression von Transportproteinen kodierender Gene in Wurzeln, Blättern und Blütenständen in Abhängigkeit der Fe-, Zn-, Se- und Wasserversorgung in verschiedenen Maisgenotypen und deren quantitativer Beitrag zum Zellimport und -export, dem Radialtransport und der Xylem- und Phloembeladung von Fe-, Zn- und Se. Zudem wird ein Forward-Ionomik Screening einer Mais-MAGIC-Population, die unterschiedliche Wassermangel-Toleranzen aufweist, durchgeführt. Dies wird mit einer Assoziationskartierung kombiniert, um genetische Loci und zugrundeliegende Gene zu identifizieren, die die Unterschiede in der Fe-, Zn- und Se-Akkumulation in Spross und Korn unter Gewächshaus- und Freilandbedingungen steuern. Die erzielten Ergebnisse des Projektes werden zu einem besseren Verständnis der gekoppelten und individuellen Aufnahme- und Akkumulationsprozesse von Fe, Zn und Se in Mais beitragen, und damit zur Züchtung von Maislinien, die im Kontext eines sich wandelnden Klimas dennoch hohe Gehalte an, für Mensch und Tier, essentiellen Mikronährstoffen aufweisen.

1 2 3 4 564 65 66