API src

Found 181 results.

Oekologie und Physiologie von Bakterien an extrem salzhaltigen Standorten

Standorte von extremer Salinitaet werden auf ihre oekologischen Parameter und die damit selektionierte Bakterienflora untersucht. Ziel: Loesung der Frage, wodurch Mikroorganismen befaehigt sind, in gesaettigten Salzloesungen (evtl. von hoher Alkalinitaet) zu ueberleben und sich diesen Standorten anzupassen. Das Projekt befindet sich gegenwaertig im Stadium einer Bestandsaufnahme. Bisheriges oekologisches Objekt: Alkaliseen in Aegypten.

Schwerpunktprogramm (SPP) 2238: Dynamik der Erzmetallanreicherung, Teilprojekt: Dynamik des Transports von Erzmetallen in alkalinen Porphyrsystemen

Unser Projekt zielt auf die Untersuchung der detaillierten Transportmechanismen von Erzmetallen inklusiver ihrer Aufstiegswege und Träger in akalinen porphyrisch-epithermalen Systemen. Die Studie fokussiert sich auf die Ladolam-Lagerstätte auf Lihir (Papua-Neuginea), die eine der größten und repräsentativsten Lagerstätten dieses Typs darstellt. Südlich von Lihir befindet sich ein junges, submarines Vulkanfeld, das als mögliches Analog zu einer Frühphase des Vulkansystems von Ladolam angesehen wird. Nur hier finden sich weniger entwickelte Gesteine und die Eruptionsbedingungen in >1 km Wassertiefe erlauben es den Metalltransport in magmatischen Sytemen zu studieren, die möglichst wenig durch magmatische Differentiation und Entgasung in flachen Krustenstockwerken beeinflusst sind. Epithermale Mineralisationen ähnlich zu Ladolam treten am Conical Seamount auf und Mantel- und Krustenxenolithe, die magmatische Prozesse von der Mantelquelle bis zur Eruption aufzeichnen, sind in den Laven des nahen Tubaf Seamounts häufig. Unser Forschungsprojekt fokussiert sich auf die detaillierte Rekonstruktion der thermobarometrischen Entwicklung während des Aufstiegs der Schmelzen und wie diese sich auf den Oxidationszustand sowie die Fähigkeit Metalle zu transportieren auswirkt. Hierfür planen wir mit einer grundlegenden petrologischen und geochemischen Charakterisierung der Gesteinsproben zu beginnen und diese mit hochauflösender Analyse von Volatilen und Spurenmetallen sowie Mikrothermobarometrie anhand von Fluid- und Glas-(vormals Schmelz-)einschlüssen zu kombinieren. Mit Hilfe dieser Daten wollen wir zu einem verbesserten Verständnis der Steuermechanismen für subvulkanische Intrusionen oder vulkanische Eruptionen in diesem speziellen Setting beitragen. Die Integration unserer Erkenntnisse zu den magmatischen Prozessen im Untergrund mit der Entwicklung der Silizium-untersättigten, hoch alkalinen Magmen, die nachweislich sehr fertil für die Entstehung ökonomisch relevanter porphyrischer Lagerstätten sind, ist daher von bedeutender Relevanz. Darüber hinaus werden unsere Abschätzungen zum lithostatischen Druck der Schmelzstagnation, der Aufstiegsraten, Eruptionsauslösern und möglicherweise zur Tiefe der Entmischung von Fluid und Schmelze als Datengrundlage direkt in das von PD Dr. Philipp Weis geführte Projekt zur Modellierung der physikalischen Bedingungen der Porphyrbildung in Ladolam eingehen. Weitere Anknüpfungspunkte innerhalb des SPP 2238 DOME ergeben sich zum Projekt von Dr. Andreas Audétat, das sich auf petrologische Experimente in Verbindung zu alkalinen Porphyren in kontinentalen Settings fokussiert.

Bindung des Schwefels beim Brennen von Zementklinker

Beim Brennen des Zementklinkers tritt praktisch keine SO2-Emission auf, da der aus den Roh- und Brennstoffen stammende Schwefel mit den Alkalien des Brennguts unter Bildung von schwerverdampfbarem Alkalisulfat reagiert. Um ohne Erhoehung der SO2-Emission auch schwefelreiche Abfaelle (Oelrueckstaende, Saeureharz) als Brennstoff Verwenden zu koennen, muss in Betriebsversuchen geprueft werden, ob der Schwefel nicht nur von den Alkalien, sondern auch vom Kalk gebunden werden kann. Ausserdem ist zu Untersuchen, ob der dann hoehere Sulfatgehalt im Zementklinker die Eigenschaften des Zements veraendert.

Energiespeicherung durch Latentwärmespeicher - Wärmeuebertragung an schmelzende und erstarrende Substanzen

Da bisher keine Methode existiert, elektrische Energie in groesseren Mengen wirtschaftlich zu speichern, gewinnt die Speicherung von Waermeenergie zunehmend an Bedeutung. Es ist bekannt, dass eutektische Mischungen aus Fluoriden der Alkali- und Erdalkalimetalle (LIF, NaC18 NaF, MgCl2), aber z.B. auch reines Lithiumfluorid extrem hohe Schmelzwaermen besitzen. Fluoridmischungen koennen 2- bis 3-mal soviel Waerme speichern wie bisher benutzte Waermespeichermaterialien. Im Vergleich zum Bleiakkumulator weisen sie eine etwa dreissigmal hoehere Energiespeicherkapazitaet auf. Es besteht das Problem der Erreichung hoher Waermestromdichten zum Zweck einer moeglichst intensiven Waermezufuhr bzw. Waermeabgabe an der Oberflaeche.

Exploring transport limitations in zero-gap alkaline electrolysis

Exploring transport limitations in zero-gap alkaline electrolysis, Teilvorhaben 2: Simulation von alkalischen Elektrolysezellen mit Fokus auf das Blasenverhalten

Exploring transport limitations in zero-gap alkaline electrolysis, Teilvorhaben 1: Optimiertes Blasenwachstum und Blasentransport in Zero-Gap sowie membranlosen Elektrolyseuren

Exploring transport limitations in zero-gap alkaline electrolysis, Teilvorhaben 3:Blasengrößenverteilung in zero-gap Design alkalischer Elektrolyseure

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Freisetzung von volatilen Komponenten und Erzmetallen aus Magmen intraozeanischer Bögen: Erkenntnisse aus Hochdruckexperimenten und der Analyse von Schmelzeinschlüssen am Beispiel des Brothers Vulkans, Kermadec-Bogen

Das Hauptziel der in 2018 durchgeführten IODP Expedition 376 war die Untersuchung magmatisch-hydrothermaler Systeme und damit assoziierter Erzmetallablagerungen (von z.B. Cu und Au) in intraozeanischen Vulkanbögen. Die Expedition konzentrierte sich auf die Erkundung des Brothers Unterwasservulkans, der, im Gegensatz zu einigen anderen Vulkansystemen entlang des Kermadec-Bogens, dazitische bis rhyolitische Schmelzen fördert. Besonders am Brothers Vulkan ist neben der extremen Anreicherung an Cl die große Bandbreite an unterschiedlichen Zusammensetzungen (z.B. im Alkali- und Aluminiumoxidgehalt und in Mg). Ziel des Vorhabens ist deshalb, die Natur und Zusammensetzung der freigesetzten volatilen Phasen (u.a. ob es sich um einphasige oder zweiphasige Fluide handelt) zu untersuchen, sowie deren Einfluss auf Fraktionierungstrends und auf die Anreicherung von Metallen während der Differenzierung.Um dies zu erreichen, werden komplementäre analytische und experimentelle Untersuchungen durchgeführt: 1) Hauptelementanalysen von Matrixgläsern und Glaseinschlüssen sollen Aufschluss über die Herkunft der felsischen Magmen sowie die Fraktionierungs- und Differenzierungsprozesse geben; 2) Hochdruck-Kristallisationsexperimente sollen die Bedingungen in der Magmakammer und die Rolle der volatilen Komponenten, insbesondere von Cl und H2O, bei der Fraktionierung von Magmen beleuchten; 3) Spurenelementanalysen von Glaseinschlüssen in Plagioklas und Klinopyroxen liefern Informationen über den Einfluss volatiler Komponenten und der Sauerstofffugazität auf die Anreicherung von Erzmetallen (z.B. Fe, Cu, Zn, W, Au). Da die meisten Glaseinschlüsse Quench-Kristalle und Blasen enthalten, müssen sie zunächst bei hohen Drücken wieder homogenisiert werden. Die Kombination der drei geplanten Arbeitspakete wird einen wichtigen Beitrag dazu leisten, die Entwicklung der Metallanreicherung in Cl-reichen magmatischen Systemen während der Differenzierung und im magmatisch-hydrothermalen Stadium nachvollziehen zu können.

Schwerpunktprogramm (SPP) 2238: Dynamik der Erzmetallanreicherung, Teilprojekt: Tiefenkontrollierte fluidgesteuerte Verteilung von Metallen in magmatischen Alkaligesteins-Karbonatit-Systemen

Alkalisilikatische und karbonatitische Schmelzen bilden Intrusionskörper mit ausgeprägter vertikaler Zonierung von magmatischen Gesteinen sowie von Lagerstätten seltener Metalle. Elemente, wie z.B. Nb, Zr, Hf, SEE oder Ti, werden durch magmatische Fraktionierung sowie durch Fluide, die in verschiedenen Intrusionsniveaus ausgeschieden werden, angereichert und vertikal verteilt. Fluide, die Teil eines konvektiven Systems sind, das sich um einen abkühlenden Intrusionskörper ausbildet, überprägen die magmatischen Mineralphasen und haben einen wesentlichen Einfluss auf die post-magmatische Metallverteilung. Ein umfassendes Verständnis für die magmatische und fluidgesteuerte Anreicherung und Bildung von Mineralphasen seltener Metalle erfordert die unmittelbare in-situ-Bestimmung erzbildender seltener Metalle in Schmelz- und Fluideinschlüssen, die die gesamte lithologische Abfolge ultrabasisch-alkalischer sowie karbonatitischer magmatischer Bildungen entlang des Spektrums von Intrusionstiefen repräsentieren, sowie die Betrachung der möglichen Rolle externer Fluide während postmagmatischer Remobilisierungsprozesse. Für dieses Projekt wurden Gesteinsproben von Intrusionskörpern aus verschiedenen Tiefen zusammengestellt, die petrologisch gut voruntersucht sind und die die große lithologische Bandbreite von alkalisilikatischen und karbonatitischen magmatischen Systemen repräsentieren (Lesnaya Varaka, Afrikanda, Ozernaya Varaka, Lueshe, Alnö, Sokli and Kalkfeld). Fluid- und Schmelzzusammensetzungen werden mit Hilfe von Mikrothermometrie, Ramanspektroskopie, Elektronenstrahlmikrosondenanalytik und LA-ICP-MS Einschlussanalytik bestimmt werden. Die gewonnenen Daten zu Metallgehalten in Fluiden und Schmelzen werden durch moderne LA-ICP-MS Halogenanalytik (Cl-Br-I) an Flüssigkeitseinschlüssen sowie SIMS Halogenanalytik ((F-Cl-Br-I und d37Cl) an Apatit ergänzt, um die Herkunft der beteiligten Fluide näher eingrenzen zu können. Das Forschungsvorhaben führt damit zu einem umfassenden Verständnis des Transports und der Anreicherung erzbildender Metalle in komplexen, an alkalimagmatische und karbonatitische Intrusionen gebundene Fluidsystemen, die sich von magmatischen bis hin zu hydrothermalen Temperaturen entwickeln. Die Forschungsergebnisse stellen aber auch die Grundlage für die Entwicklung effektiverer und präziserer Verfahren in der Tiefenexploration, Lagerstättenevaluation und der resourcenschonenden Gewinnung seltener metallischer Rohstoffe von großer gesellschaftlicher Bedeutung.

1 2 3 4 517 18 19