API src

Found 213 results.

Similar terms

s/arktischer-ozean/Arktischer Ozean/gi

Zeitlich hochauflösende Klimarekonstruktion für das Spätquartär mittels Sedimentologie und Isotopengeochemie - vergleichende Untersuchungen in der Arktis und Antarktis

Ziel dieses Projektes ist eine vergleichende, zeitlich hochauflösende Rekonstruktion der Klimaentwicklung im Spätquartär im Bereich der Framstraße (Arktis) und des Riiser-Larsen Meeres (Antarktis). Mit Hilfe von Korngrößenanalysen und Sm-Nd-Isotopendaten, sollen klimagesteuerte Veränderungen in der Geschwindigkeit von Bodenströmungen, sowie der Provenienzen, Transportwege und -mechanismen der Sedimente ermittelt werden. Von großer Bedeutung ist die Unterscheidung zwischen strömungs- und eistransportiertem Sediment. Darauf aufbauend untersuchen wir die Kopplung zwischen thermohalinen Prozessen im Nordatlantik/Europäischen Nordmeer und dem Arktischem Ozean. Im RiiserLarsen Meer soll untersucht werden, ob ein Rinnensystem auf dem Kontinentalhang dem klimagesteuerten Abfluss von auf dem Schelf gebildetem Bodenwasser dient. In diesem Zusammenhang wird auch eine mögliche Verschiebung des Weddellwirbels infolge klimatischer Einflüsse untersucht. Im Vordergrund der Arbeiten stehen die Untersuchung von kontemporären Klimaphasen in der Nord- und Südhemisphäre und die Reaktion des Atmoshäre-Eis-Meer Systems im bipolaren Vergleich.

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Untersuchungen zur Reaktion von Meeresspiegel und Hydrographie in der Arktis auf Veränderungen des hydrologischen Regimes über borealen Einzugsgebieten

Der Süßwassereintrag in den Arktischen Ozean stellt einen wichtigen Antriebsmechanismus für regionale Meeresspiegeldynamik in der Arktis dar. Salzarmes Oberflächenwasser erzeugt und unterhält eine starke Schichtung im Arktischen Ozean. Diese Halokline schirmt größtenteils das kalte polare Oberflächenwasser und das Meereis von wärmerem Tiefenwasser atlantischen Ursprungs ab und verhindert so vertikale Wärmeflüsse. Veränderungen des Süßwassergehalts werden wahrscheinlich den regionalen Meeresspiegel direkt beeinflussen, aber ebenso wird eine modifizierte Ozeandynamik durch Massentransporte innerhalb der Arktis den Meeresspiegel verändern. Das hydrologische Regime des kontinentalen Abflusses unterliegt Schwankungen. Leider sind kontinuierliche Aufzeichnungen von kontinentalem Abfluss in den Arktischen Ozean zu selten, um wichtige wissenschaftliche Fragen über das Langzeitverhalten und die Entwicklung von arktischem Meeresspiegel und Klima zu bearbeiten. Neben in-situ Beobachtungen und hydrologischen Modellen eröffnen Satellitengravimetrie (GRACE) und Satellitenaltimetrie neue Möglichkeiten, die Hydrologie von großen Einzugsgebieten zu beobachten. Dies geschieht, im dem man mit diesen Fernerkundungsmethoden die Größe von Wasserspeichern in den Einzugsgebieten und Pegelstände entlang von Flüssen misst, die dann auf verschieden Arten in Abfluss umgerechnet werden können. Für Meereis-Ozeanmodelle bedeutet die Seltenheit von Abflussinformationen in der Arktis, dass der Jahresgang des Abflusses als stationär angenommen wird. In unserem Projekt werden wir diese Annahme aufheben und ein Meereis-Ozeanmodell benutzen, um den Einfluss von zeitlich variablem Abfluss auf die arktische Ozeanzirkulation und das Süßwasserbudget zu untersuchen. Das Hauptziel der Projektes ist es, die Reaktion von Meeresspiegel und Hydrographie in der Arktis auf Veränderungen des hydrologischen Regimes über borealen Einzugsgebieten abzuschätzen und zu quantifizieren. Die Projektziele tragen zur Strategie des Schwerpunktprogramms 1889 bei, indem 1)die Datensätze und Zeitreihen von hydrologischen Parametern über borealen Einzugsgebieten durch den Einsatz von geodätischen satellitengestützten Fernerkundungsmethoden (zeitliche auflösenden Gravimetrie, Satellitenaltimetrie) verbessert werden und lange und hochauflösende Zeitserien für alle großen Einzugsgebiete, die in den Arktische Ozean entleeren, erstellt werden. 2) Sensitivität von Meereis- und Ozeandynamik auf Veränderungen des Süßwasserantriebs (u.a. Abfluss) analysiert wird. 3) Modellergebnisse über Veränderungen des kontinentalen Abflusses verglichen werden mit seit 1990 beobachteter Variabilität von flüssigen Süßwassergehalt (und damit verbundenen sterischen Meeresspiegeländerungen) im Arktischen Ozean und im Nordatlantik. Nicht nur dienen diese Vergleiche der Modellbewertung, sondern sie unterstützen auch die Interpretation relativ seltener ozeangraphischer in-situ Beobachtungen.

Dissolved major element (Ca, Sr, Mg, K, Li) concentration data of the western Atlantic Ocean meridional section GA02 (GEOTRACES) and Arctic Ocean cruise JR271 (BODC)

This dataset presents salinity-normalized dissolved major element (Ca, Mg, K, Sr, Li) concentrations in the western Atlantic Ocean and the Arctic Ocean. Atlantic samples were collected along the western meridional GEOTRACES section GA02 comprised of cruises JR057 (Punta Arenas (Chile) 02-03-2011 to Las Palmas (Spain) 06-04-2011 ), PE321 (Bermuda 11-06-2010 to Fortaleza (Brazil) 08-07-2010), PE319 (Scrabster 28-04-2010 to Bermuda 25-05-2010), and PE358 (Reykjavik (Iceland) 29-07-2012 to Texel (Netherlands) 19-08-2012). Samples for dissolved major ions were sub-sampled from trace metal sample collection stored at the Royal Netherlands Institute for Sea Research (NIOZ). Samples for the Arctic Ocean were collected on BODC cruise JR271 (Immingham 01-06-2012 to Reykjavik 02-07-2012). Samples were analysed for Na, Ca, Mg, K, Li and Sr using a Varian-720 ES ICP-OES. Samples were diluted by a factor of 78-82 in 0.12 M HCl to the same final salinity. Multiple spectral lines were selected for each element, and samples were corrected for instrumental drift by sample-standard bracketing with IAPSO P157 diluted to the same final salinity. Calibration was performed on 7 dilutions of IAPSO P157. Element-to-sodium ratios were calculated for all combinations of spectral lines. Assuming a constant Na-to-salinity (PSU)=35 ratio, the element/Na ratios were multiplied by 0.46847 µmol kg-1 to obtain the salinity (PSU)-normalized element concentration, and by the ratio of practical to absolute salinity (TEOS-10). The TEOS-10 absolute salinities were calculated from EOS-80 values using the Gibb's Oceanographic Toolbox using the R package 'gsw' (v 1.1-1).

Vorhaben: SO293 - ALEUT BIO: Deutsch-russische Tiefseebiologie Studien im Aleutengraben und dem östlichen Kurilen-Kamtschatka Graben

Surface seawater carbonate chemistry, nutrients and phytoplankton community composition on a transect between North Sea and Arctic Ocean, 2008

This data was collected during the 'ICE CHASER' cruise from the southern North Sea to the Arctic (Svalbard) in July-Aug 2008. This data consists of coccolithophore abundance, calcification and primary production rates, carbonate chemistry parameters and ancillary data of macronutrients, chlorophyll-a, average mixed layer irradiance, daily irradiance above the sea surface, euphotic and mixed layer depth, temperature and salinity.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Verständnis von Wolken und Niederschlag auf der Meter-Skala mit HALO und ICON – Luftmassentransformation in der Arktik

Die Entwicklung arktischer Luftmassen ist wichtig für die Entstehung und Beständigkeit von Wolken und Niederschlag. Zwei Phänomene – warme und feuchte Einflüsse aus dem Süden sowie kalte und trockene Strömungen aus dem Norden – verursachen besonders starke und schnelle Änderungen in den Luftmassen. Während dieser Ereignisse ändern sich die Zustände z.B. der Wolken, der Stabilität und des Feuchtebudgets sowohl räumlich als auch zeitlich. Aufgrund dieser schnellen Änderungen sowie den generellen arktischen Bedingungen mit niedrigen und oft starken Inversionen, ist es schwierig die Prozesse mit globalen Modellen mit einer groben Auflösung sinnvoll wiederzugeben. Um die entscheidenden Prozesse sowohl besser zu erfassen als auch zu parameterisieren, wird in diesem Projekt eine Kombination aus detaillierten Beobachtungen mit dem HALO Flugzeug und hoch-aufgelösten Simulationen mit dem ICON-LEM verwendet. Durch die lange Reichweite des HALO Flugzeuges wird es möglich sein dasselbe Ereignis mehrmals zu messen und dadurch einen breiten Einblick in die Struktur der Luftmasse zu bekommen. Darüber hinaus wird es durch die Lagrangsche, d.h. mit der Strömung mitbewegte, Flugstrategie möglich sein, die zeitliche Entwicklung der Luftmassen während der Ereignisse zu erfassen. Durch lokale Verfeinerungen um den tatsächlichen Flug herum wird die Auflösung des ICON-LEM Setups zwischen 1 km und 100 m variieren. Mit dieser einzigartige Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird es möglich sein, das Feuchtebudget während der beobachteten warmen und kalten Einströmungen abzuschätzen. Anhang dieser Abschätzung können anschließend offene Fragen wie die Effizienz des Niederschlages sowie deren Einfluss auf die Beständigkeit der arktischen Mischphasenwolken untersucht werden. Während die Lagrangsche Flugstrategie es ermöglicht neue und einzigartige Forschungsfragen zu untersuchen, stellt sie die Flugplanung vor eine große Herausforderung, da eine gute Abschätzung der Luftströmungen unerlässlich sein wird. Teil dieses Projekts ist es deshalb auch die Flugplanung durch hochaufgelöste Vorhersagen und die Verfolgung bestimmter Luftmassen zu unterstützen. Insbesondere die Berechnung mehrerer Trajektorien wird es ermöglichen die verbleibenden Unsicherheiten abzuschätzen und sinnvolle Flugmuster vorzuschlagen. Die vorgeschlagene Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird zu einem besseren Verständnis der Änderungen im Feuchtebudget und der Erhaltung von Mischphasenwolken während der feuchten sowie kalten Luftströmungen in der Arktis führen.

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Vertikaler turbulenter Aerosolpartikeltransport über offenem Wasser und Eis in der zentralen Arktis während des Sommers - Aerosolpartikelquellen und -umwandlung in der arktischen marinen Grenzschicht

In der Arktis ist aktuell die stärkste Temperaturerhöhung im Zuge des Klimawandels zu beobachten. Diese Tatsache beruht auf einer komplexen Kette von Prozessen und Rückkopplungen, in denen Aerosolpartikel durch ihren Einfluss auf Strahlungsbilanz und Wolkenbildung eine wesentliche Rolle spielen. Um die Auswirkungen der sich ändernden Eisbedeckung abschätzen zu können, müssen die Wechselwirkungen zwischen Ozean sowie Eis und der Atmosphäre besser verstanden werden. Grundsätzlich mangelt es besonders im Bereich des arktischen Ozeans an atmosphärischen Messungen, die zum Verständnis der Prozesse aber auch zur Vorhersage der zu erwartenden Änderungen dringend benötigt werden. Austauschprozesse zwischen Ozean/Eis und Atmosphäre sind in diesen Regionen ebenfalls wenig untersucht. Im Rahmen dieses Projektes sollen mithilfe der RV Polarstern vertikale Austauschprozesse oberhalb von Wasser und Eis im Detail betrachtet werden und damit verbundene Quellen für Aerosolpartikel lokalisiert werden. Dazu ist eine Reihe von kontinuierlichen Aerosolmessungen an Bord des Schiffes geplant, die die Anzahlgrößenverteilungen, optische Parameter (Streuung, Absorption), das Mischungsverhältnis von Partikeln, die schwarzen Kohlenstoff (BC) enthalten, die Konzentration von eisbildenden Partikeln (INP) sowie die chemische Zusammensetzung der Aerosolpartikel umfassen. Weiterhin werden in den im Sommer häufig auftretenden Nebelphasen Nebelwasserproben gesammelt, sowie während der gesamten Kampagne täglich Wasserproben aus dem Ozean entnommen. Diese Proben werden nach der Kampagne auf die Konzentration von INP und BC untersucht. Weiterhin sollen erstmals mit Laser-Inkandeszenz Methoden die BC-Konzentrationen sowohl im luftgetragenen Aerosol als auch in Wasserproben gemessen werden. Zur Vorbereitung der Wasserproben mit hoher Salinität werden neuartige Methoden angewandt. Durch diese Kombination der parallelen Untersuchung von Bestandteilen in Luft und Wasser sollen Transport- und Austauschprozesse dieser Aerosolpartikel quantifiziert werden. Während langsamer Fahrt des Schiffes oder Drift mit dem Eis wird Messtechnik zur Bestimmung von vertikalen Partikelflüssen am vorderen Ausleger des Schiffes eingesetzt. Damit werden Zeitreihen des Windvektors und der Partikelkonzentration erfasst, mit deren Hilfe im Anschluss der vertikale, turbulente Partikelfluss über unterschiedlichen Oberflächen durch die Eddy Kovarianz Methode bestimmt werden soll. Kombiniert mit diesen Messungen wird die Konzentration der INP erfasst, um deren Ursprung und Quellen lokalisieren zu können. Ein weiteres Messsystem, das aus einer eindimensionalen Windmessung und einem Partikelzähler besteht, wird am Kranhaken des vorderen Auslegers befestigt und bestimmt Vertikalprofile der Partikelkonzentration, aus denen ebenfalls eine Abschätzung des Vertikalflusses von Partikeln möglich ist. Diese Methoden sind erprobt und etabliert, wurden nur bisher noch nie in dieser Form über dem arktischen Ozean angewendet.

Vergangene und zukünftige Entwicklung der Eismassen auf Svalbard - Klimaantrieb und Telekonnektionen

Der Klimawandel ist eine der Hauptherausforderungen für die Menschheit im 21. Jahrhundert. Seine Auswirkungen sind vielschichtig wobei der anwachsende Massenverlust von Gletschern außerhalb der großen Eisschilde sowie deren bedeutender Beitrag zum Meeresspiegelanstieg zu den am stärksten hervorstechenden zählt. Diesbezüglich sind die Gletscher und Eiskappen der Arktis aufgrund ihres großen Volumens und ihrer großen Oberfläche, die als Kontaktfläche zum Klima- und Ozeanantrieb und damit zum Klimawandel selber fungiert, von besonderer Bedeutung. Da die Arktis darüber hinaus diejenige Region der Erde mit dem höchsten, prognostizierten, zukünftigen Temperaturanstieg ist, wird erwartet, daß sich die Bedeutung der arktischen Eismassen für den Meeresspiegelanstieg auch in Zukunft fortsetzt oder sogar noch steigern wird.Die großen Gletscher der Nordpolarregion umgeben den arktischen Ozean in ähnlichen Breitenlagen, weisen aber in jüngster Zeit ein inhomogenes Verhalten auf. Diese Tatsache legt eine räumliche Variabilität der klimatischen und ozeanischen Antriebsmechanismen der Gletschermassenbilanz innerhalb der zirkumarktischen Regionen nahe und offenbart damit die Diversität der Einflüsse des Klimawandels. Bezüglich der Variabilität der Antriebsmechanismen weist Svalbard in der Arktis eine einzigartige Lage auf. Es liegt an der Grenze zwischen kalten, polaren Luftmassen und Ozeanwassern und den Einflüssen des Westspitzbergenstroms, welcher der hauptsächliche Warmwasserlieferant für das arktische Umweltsystem ist. Darum verspricht das Erforschen der Reaktionen der Gletscher auf Svalbard auf die Veränderlichkeit des Klima- und Ozeanantriebs bedeutende Einblicke in die komplexe Kausalkette zwischen Klimawandel, der Variabilität der Klima- und Ozeanbedingungen in der Arktis und der Reaktion der arktischen Landeismassen. Das Ziel des Projektes ist es eine zuverlässige Abschätzung der räumlichen und zeitlichen Variabilität der klimatischen Massenbilanz aller Gletscher und Eiskappen auf Svalbard zu erreichen und diese mit dem Klima- und Ozeanantrieb in Verbindung zu setzen. Dazu wird ein räumlich verteiltes, von statistisch downgescalten Klimadaten angetriebenes Model zur Berechnung der klimatischen Massenbilanz aufgesetzt. Die Massenbilanz aller Gletscherflächen auf Svalbard wird für den Zeitraum 1948-2013 modelliert und die zeitlich variablen Felder von Ablation, Akkumulation, wiedergefrorenem Schmelzwasser und klimatischer Massenbilanz für anschließende geostatistische Studien genutzt. Diese Studien werden potentielle Einflüsse der raumzeitlichen Variabilität von großräumigen Mustern des Luftdrucks, der Meereisbedeckung und der Meeresoberflächentemperatur auf die Variabilität der Gletschermassenbilanz auf Svalbard identifizieren und analysieren. Auch Telekonnektionen zu fernen Modi der atmosphärischen Zirkulation werden durch Studien bezüglich der potentiellen Einflüsse verschiedener atmosphärischer Zirkulationsindizes in die Betrachtungen einbezogen.

Charakterisierung von Mineralstaub-Deposition mit hoher Zeitauflösung im Hinblick auf Partikelgröße, Zusammensetzung und atmosphärische Alterung an für ein atmosphärisch-ozeanisches Staubbudget relevanten Standorten

Nass- und Trockendeposition sind die wesentlichen Prozesse, die Mineralstaub aus der Atmosphäre entfernen. Teragramm Mineralstaub werden pro Jahr interkontinental verfrachtet. Erreicht Staub weitab von seiner Quelle wieder die Erdoberfläche, kann er erheblichen Einfluss auf Ökosysteme haben. Insbesondere ozeanische Ökosysteme sind in ihrer Bioproduktivität nährstofflimitiert. Diese Nährstoffe können durch Mineralstaub eingetragen werden. Trotz der Bedeutung der Deposition sind Messungen bislang rar, und Staubmodelle, die sich an den wenigen Messungen validieren, zeigen erhebliche Fehler. Hauptsächlich der Mangel an geeigneten Messdaten behindert im Moment das weitergehende Verständnis des Staubzyklus. Fehlende standardisierte Messtechnik zur Trockendepositionsmessung erschwert bislang gute Datenerfassung. Daher wird ein neuer automatisierter Nass- und Trockendepositionssammler entwickelt und charakterisiert. Der Sammler wird mit meteorologisch relevanter Zeitauflösung (Stunden bis Tage) betrieben und damit einen großen Nachteil vergangener Messungen beheben, nämlich eine Zeitauflösung von meist Wochen bis Monaten. Durch den Einsatz automatisierter rasterelektronenmikroskopischer Einzelpartikel-Analyse wird ein bisher unerreichter Daten-Detailreichtum für Partikelgrößen von 700 nm bis 100 mym zur Verfügung stehen, einschließlich Partikelgrößenverteilung, Elementzusammensetzung und Partikel-Mischungszustand. Besondere Aufmerksamkeit wird potentiellen Nährstoffen wie Fe, P, K, Mg und Ca gewidmet. Für ausgewählte Proben wird weiterhin Partikel-Hygroskopizität bestimmt.Nach der Testphase auf der Insel Frioul, Frankreich, während der der Sammler im Vergleich zur dort existierenden Zeitreihe validiert wird, werden drei Instrumente an Stationen in Betrieb genommen, die für Staubeintrag in die relevant Ozeane sind: Sao Vicente, Kap Verde und Barbados im Saharischen Ausfluss so wie Heimaey, Island, im arktischen Staub. In einer zweiten Phase (nach dem vorliegenden Projekt) soll das Netzwerk dann erweitert werden durch New Island, Falkland im südamerikanischen Ausfluss, Amakusa, Japan im asiatischen Ausfluss und die Insel Amsterdam zwischen dem südafrikanischen und dem australischen Ausfluss. Zum ersten Mal werden aus diesem Projekt kontinuierliche Zeitreihen der Nass- und Trockendeposition von Mineralstaub zur Verfügung stehen, die tägliche bzw. Ereignis-basierte Zeitauflösung und zudem Partikel-Größenauflösung bieten. Hieraus werden atmosphärische Schlüsselfaktoren abgeleitet, die zur Deposition führen. Weiterhin wird eine Partitionierung zwischen Nass- und Trockendeposition und ihr Größenverteilung von Nährstoffen - insbesondere P und Fe - untersucht. Partikel-Mischungszustand und Form werden durch ein Mischungsmodell und Bildanalyse bestimmt. Eine öffentliche Datenbank wird bereitgestellt, die z. B. für Modellvalidierung zu Verfügung steht. Es ist geplant, die Stationen nach Ende der DFG-Finanzierungphase weiter zu betreiben.

1 2 3 4 520 21 22